720 research outputs found
Super-AGB Stars and their role as Electron Capture Supernova progenitors
We review the lives, deaths and nucleosynthetic signatures of intermediate
mass stars in the range approximately 6.5-12 Msun, which form super-AGB stars
near the end of their lives. We examine the critical mass boundaries both
between different types of massive white dwarfs (CO, CO-Ne, ONe) and between
white dwarfs and supernovae and discuss the relative fraction of super-AGB
stars that end life as either an ONe white dwarf or as a neutron star (or an
ONeFe white dwarf), after undergoing an electron capture supernova. We also
discuss the contribution of the other potential single-star channels to
electron-capture supernovae, that of the failed massive stars. We describe the
factors that influence these different final fates and mass limits, such as
composition, the efficiency of convection, rotation, nuclear reaction rates,
mass loss rates, and third dredge-up efficiency. We stress the importance of
the binary evolution channels for producing electron-capture supernovae. We
discuss recent nucleosynthesis calculations and elemental yield results and
present a new set of s-process heavy element yield predictions. We assess the
contribution from super-AGB star nucleosynthesis in a Galactic perspective, and
consider the (super-)AGB scenario in the context of the multiple stellar
populations seen in globular clusters. A brief summary of recent works on dust
production is included. Lastly we conclude with a discussion of the
observational constraints and potential future advances for study into these
stars on the low mass/high mass star boundary.Comment: 28 pages, 11 figures. Invited review for Publications of the
Astronomical Society of Australia, to be published in special issue on
"Electron Capture Supernovae". Submitte
The Chemical Evolution of Helium in Globular Clusters: Implications for the Self-Pollution Scenario
We investigate the suggestion that there are stellar populations in some
globular clusters with enhanced helium (Y from 0.28 to 0.40) compared to the
primordial value. We assume that a previous generation of massive Asymptotic
Giant Branch (AGB) stars have polluted the cluster. Two independent sets of AGB
yields are used to follow the evolution of helium and CNO using a Salpeter
initial mass function (IMF) and two top-heavy IMFs. In no case are we able to
produce the postulated large Y ~ 0.35 without violating the observational
constraint that the CNO content is nearly constant.Comment: accepted for publication in Ap
Partial mixing and the formation of 13C pockets in AGB stars: effects on the s-process elements
The production of the elements heavier than iron via slow neutron captures
(the s process) is a main feature of the contribution of asymptotic giant
branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos.
However, our understanding of the main neutron source, the 13C(alpha,n)16O
reaction, is still incomplete. It is commonly assumed that in AGB stars mixing
beyond convective borders drives the formation of 13C pockets. However, there
is no agreement on the nature of such mixing and free parameters are present.
By means of a parametric model we investigate the impact of different mixing
functions on the final s-process abundances in low-mass AGB models. Typically,
changing the shape of the mixing function or the mass extent of the region
affected by the mixing produce the same results. Variations in the relative
abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are
generally within +/-0.2 dex, similar to the observational error bars. We
conclude that other stellar uncertainties - the effect of rotation and of
overshoot into the C-O core - play a more important role than the details of
the mixing function. The exception is at low metallicity, where the Pb
abundance is significantly affected. In relation to the composition observed in
stardust SiC grains from AGB stars, the models are relatively close to the data
only when assuming the most extreme variation in the mixing profile.Comment: 17 pages, 8 figures, 6 tables, accepted for publications on Monthly
Notices of the Royal Astronomical Societ
Evolution and nucleosynthesis of helium-rich asymptotic giant branch models
There is now strong evidence that some stars have been born with He mass
fractions as high as (e.g., in Centauri). However,
the advanced evolution, chemical yields, and final fates of He-rich stars are
largely unexplored. We investigate the consequences of He-enhancement on the
evolution and nucleosynthesis of intermediate-mass asymptotic giant branch
(AGB) models of 3, 4, 5, and 6 M with a metallicity of
([Fe/H] ). We compare models with He-enhanced compositions
() to those with primordial He (). We find that the
minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores
decreases from above our highest mass of 6 M to 4-5 M
with . We also model the production of trans-Fe elements via the slow
neutron-capture process (s-process). He-enhancement substantially reduces the
third dredge-up efficiency and the stellar yields of s-process elements (e.g.,
90% less Ba for 6 M, ). An exception occurs for 3 M,
where the near-doubling in the number of thermal pulses with leads to
50% higher yields of Ba-peak elements and Pb if the C neutron
source is included. However, the thinner intershell and increased temperatures
at the base of the convective envelope with probably inhibit the
C neutron source at this mass. Future chemical evolution models with our
yields might explain the evolution of s-process elements among He-rich stars in
Centauri.Comment: 21 pages, 16 figures, accepted for publication by MNRAS. Stellar
yields included as online data table
AGB subpopulations in the nearby globular cluster NGC 6397
It has been well established that Galactic Globular clusters (GCs) harbour
more than one stellar population, distinguishable by the anti-correlations of
light element abundances (C-N, Na-O, and Mg-Al). These studies have been
extended recently to the asymptotic giant branch (AGB). Here we investigate the
AGB of NGC 6397 for the first time. We have performed an abundance analysis of
high-resolution spectra of 47 RGB and 8 AGB stars, deriving Fe, Na, O, Mg and
Al abundances. We find that NGC 6397 shows no evidence of a deficit in Na-rich
AGB stars, as reported for some other GCs - the subpopulation ratios of the AGB
and RGB in NGC 6397 are identical, within uncertainties. This agrees with
expectations from stellar theory. This GC acts as a control for our earlier
work on the AGB of M 4 (with contrasting results), since the same tools and
methods were used.Comment: 10 pages, 7 figures, 8 tables (2 online-only). Accepted for
publication in MNRA
Recommended from our members
Keystone XL Pipeline: Overview and Recent Developments
[Excerpt] This report describes the Keystone XL Pipeline Project and the process that the State Department must complete to decide whether it will approve or deny TransCanada’s permit application. The report also discusses key energy security, economic, and environmental issues relevant to the State Department’s national interest determination. Some of these issues include perspectives among various stakeholders both in favor of and opposed to the construction of the pipeline. Finally, the report discusses the constitutional basis for the State Department’s authority to issue a Presidential Permit, and opponents’ possible challenges to this authority
Rubidium and lead abundances in giant stars of the globular clusters M 13 and NGC 6752
We present measurements of the neutron-capture elements Rb and Pb in five
giant stars of the globular cluster NGC 6752 and Pb measurements in four giants
of the globular cluster M 13. The abundances were derived by comparing
synthetic spectra with high resolution, high signal-to-noise ratio spectra
obtained using HDS on the Subaru telescope and MIKE on the Magellan telescope.
The program stars span the range of the O-Al abundance variation. In NGC 6752,
the mean abundances are [Rb/Fe] = -0.17 +/- 0.06 (sigma = 0.14), [Rb/Zr] =
-0.12 +/- 0.06 (sigma = 0.13), and [Pb/Fe] = -0.17 +/- 0.04 (sigma = 0.08). In
M 13 the mean abundance is [Pb/Fe] = -0.28 +/- 0.03 (sigma = 0.06). Within the
measurement uncertainties, we find no evidence for a star-to-star variation for
either Rb or Pb within these clusters. None of the abundance ratios [Rb/Fe],
[Rb/Zr], or [Pb/Fe] are correlated with the Al abundance. NGC 6752 may have
slightly lower abundances of [Rb/Fe] and [Rb/Zr] compared to the small sample
of field stars at the same metallicity. For M 13 and NGC 6752 the Pb abundances
are in accord with predictions from a Galactic chemical evolution model. If
metal-poor intermediate-mass asymptotic giant branch stars did produce the
globular cluster abundance anomalies, then such stars do not synthesize
significant quantities of Rb or Pb. Alternatively, if such stars do synthesize
large amounts of Rb or Pb, then they are not responsible for the abundance
anomalies seen in globular clusters.Comment: Accepted for publication in Ap
Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production
Our main goals are to get a deeper insight into the evolution and final fates
of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to
investigate their C, N, and O yields. Using the Monash University Stellar
Evolution code we computed and analysed the evolution of stars of metallicity Z
= 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the
late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our
model stars experience a strong C, N, and O envelope enrichment either due to
the second dredge-up, the dredge-out phenomenon, or the third dredge-up early
during the TP-(S)AGB phase. Their late evolution is therefore similar to that
of higher metallicity objects. When using a standard prescription for the mass
loss rates during the TP-(S)AGB phase, the computed stars lose most of their
envelopes before their cores reach the Chandrasekhar mass, so our standard
models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we
find that the reduction of only one order of magnitude in the mass-loss rates,
which are particularly uncertain at this metallicity, would prevent the
complete ejection of the envelope, allowing the stars to either explode as an
SNI1/2 or become an electron-capture SN. Our calculations stop due to an
instability near the base of the convective envelope that hampers further
convergence and leaves remnant envelope masses between 0.25 M_sun for our 4
M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N,
and O yields derived from our full calculations and computed under two
different assumptions, namely, that the instability causes a practically
instant loss of the remnant envelope or that the stars recover and proceed with
further thermal pulses. Our results have implications for the early chemical
evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
- …