939 research outputs found

    Nucleosynthesis of Elements in Low to Intermediate Mass Stars through the AGB Phase

    Full text link
    We present a review of the main phases of stellar evolution with particular emphasis on the nucleosynthesis and mixing mechanisms in low- and intermediate-mass stars. In addition to explicit studies of the effects of the first, second and third dredge-up, we also discuss cool bottom processing and hot bottom burning.Comment: 30 pages, latex, 18 figures, uses style files aipproc.cls aipproc.sty epsf.sty ; to be published in (refereed) conference proceedings "Astrophysical Implications of the Laboratory Study of Presolar Materials", ed. T. Bernatowitz and E. Zinner (AIP: Sunnyside, NY), in press; also available at http://www.maths.monash.edu.au/~boothroy

    The treatment of mixing in core helium burning models -- III. Suppressing core breathing pulses with a new constraint on overshoot

    Full text link
    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit (2015) proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83≤M/M⊙≤50.83 \leq M/\text{M}_\odot \leq 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2R_2, the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters; the luminosity difference between these two groups; and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the \textit{Kepler} field.Comment: Accepted for publication in MNRAS; 11 pages, 6 figure

    Compulsory Deep Mixing of 3He and CNO Isotopes in the Envelopes of low-mass Red Giants

    Get PDF
    Three-dimensional stellar modeling has enabled us to identify a deep-mixing mechanism that must operate in all low mass giants. This mixing process is not optional, and is driven by a molecular weight inversion created by the 3He(3He,2p)4He reaction. In this paper we characterize the behavior of this mixing, and study its impact on the envelope abundances. It not only eliminates the problem of 3He overproduction, reconciling stellar and big bang nucleosynthesis with observations, but solves the discrepancy between observed and calculated CNO isotope ratios in low mass giants, a problem of more than 3 decades' standing. This mixing mechanism, which we call `δμ\delta\mu-mixing', operates rapidly (relative to the nuclear timescale of overall evolution, ~ 10^8 yrs) once the hydrogen burning shell approaches the material homogenized by the surface convection zone. In agreement with observations, Pop I stars between 0.8 and 2.0\Msun develop 12C/13C ratios of 14.5 +/- 1.5, while Pop II stars process the carbon to ratios of 4.0 +/- 0.5. In stars less than 1.25\Msun, this mechanism also destroys 90% to 95% of the 3He produced on the main sequence.Comment: Final accepted version (submitted to Astrophys J in Jan 2007...

    Deep Mixing of He-3: Reconciling Big Bang and Stellar Nucleosynthesis

    Get PDF
    Low-mass stars, ~1-2 solar masses, near the Main Sequence are efficient at producing He-3, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of He-3 with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that He-3 production in low-mass stars poses to the Big Bang nucleosynthesis of He-3.Comment: Accepted by Science, and available from Science Express onlin

    Super-AGB Stars and their role as Electron Capture Supernova progenitors

    Get PDF
    We review the lives, deaths and nucleosynthetic signatures of intermediate mass stars in the range approximately 6.5-12 Msun, which form super-AGB stars near the end of their lives. We examine the critical mass boundaries both between different types of massive white dwarfs (CO, CO-Ne, ONe) and between white dwarfs and supernovae and discuss the relative fraction of super-AGB stars that end life as either an ONe white dwarf or as a neutron star (or an ONeFe white dwarf), after undergoing an electron capture supernova. We also discuss the contribution of the other potential single-star channels to electron-capture supernovae, that of the failed massive stars. We describe the factors that influence these different final fates and mass limits, such as composition, the efficiency of convection, rotation, nuclear reaction rates, mass loss rates, and third dredge-up efficiency. We stress the importance of the binary evolution channels for producing electron-capture supernovae. We discuss recent nucleosynthesis calculations and elemental yield results and present a new set of s-process heavy element yield predictions. We assess the contribution from super-AGB star nucleosynthesis in a Galactic perspective, and consider the (super-)AGB scenario in the context of the multiple stellar populations seen in globular clusters. A brief summary of recent works on dust production is included. Lastly we conclude with a discussion of the observational constraints and potential future advances for study into these stars on the low mass/high mass star boundary.Comment: 28 pages, 11 figures. Invited review for Publications of the Astronomical Society of Australia, to be published in special issue on "Electron Capture Supernovae". Submitte
    • …
    corecore