2,036 research outputs found

    Detection and measurement of planetary systems with GAIA

    Get PDF
    We use detailed numerical simulations and the υ\upsilon Andromedae, planetary system as a template to evaluate the capability of the ESA Cornerstone Mission GAIA in detecting and measuring multiple planets around solar-type stars in the neighborhood of the Solar System. For the outer two planets of the υ\upsilon Andromedae, system, GAIA high-precision global astrometric measurements would provide estimates of the full set of orbital elements and masses accurate to better than 1--10%, and would be capable of addressing the coplanarity issue by determining the true geometry of the system with uncertainties of order of a few degrees. Finally, we discuss the generalization to a variety of configurations of potential planetary systems in the solar neighborhood for which GAIA could provide accurate measurements of unique value for the science of extra-solar planets.Comment: 4 pages, 2 pictures, accepted for publication in A&A Letter

    Dynamic Algorithms for the Massively Parallel Computation Model

    Get PDF
    The Massive Parallel Computing (MPC) model gained popularity during the last decade and it is now seen as the standard model for processing large scale data. One significant shortcoming of the model is that it assumes to work on static datasets while, in practice, real-world datasets evolve continuously. To overcome this issue, in this paper we initiate the study of dynamic algorithms in the MPC model. We first discuss the main requirements for a dynamic parallel model and we show how to adapt the classic MPC model to capture them. Then we analyze the connection between classic dynamic algorithms and dynamic algorithms in the MPC model. Finally, we provide new efficient dynamic MPC algorithms for a variety of fundamental graph problems, including connectivity, minimum spanning tree and matching.Comment: Accepted to the 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2019

    The observed chemical structure of L1544

    Full text link
    Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2^2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2_2 column density map, and the Tdust_{dust} map of the core. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the cc-C3_3H2_2 family (carbon chain molecules), (ii) the dust peak family (nitrogen-bearing species), (iii) the methanol peak family (oxygen-bearing molecules), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues). Only HC18^{18}O+^+ and 13^{13}CS do not belong to any of the above mentioned groups. The principal component maps allow us to confirm the (anti-)correlations among different families that were described in a first qualitative analysis, but also points out the correlation that could not be inferred before.Comment: 29 pages, 19 figures, 2 appendices, accepted for publication in A&A, arXiv abstract has been slightly modifie

    Gaia: The Astrometry Revolution

    Get PDF
    The power of micro-arcsecond (Ό\muas) astrometry is about to be unleashed. ESA's Gaia mission, now headed towards the end of the first year of routine science operations, will soon fulfil its promise for revolutionary science in countless aspects of Galactic astronomy and astrophysics. The potential of Gaia position measurements for important contributions to the astrophysics of planetary systems is huge. We focus here on the expectations for detection and improved characterization of 'young' planetary systems in the neighborhood of the Sun using a combination of Gaia Ό\muas astrometry and direct imaging techniques.Comment: 6 pages, 3 figures, to appear in the Proceedings of IAU Symposium 314 'Young Stars & Planets Near the Sun', held on May 11-15 2015 in Atlanta (GA), USA (J. H. Kastner, B. Stelzer, & S. A. Metchev, eds.

    A solution of the strong CP problem via the Peccei-Quinn mechanism through the Nieh-Yan modified gravity and cosmological implications

    Get PDF
    By identifying the recently introduced Barbero-Immirzi field with the QCD axion, the strong CP problem can be solved through the Peccei-Quinn mechanism. A specific energy scale for the Peccei-Quinn symmetry breaking is naturally predicted by this model. This provides a complete dynamical setting to evaluate the contribution of such an axion to the cold dark matter content of the Universe. Furthermore, a tight upper bound on the tensor-to-scalar ratio production of primordial gravitational waves can be fixed, representing a strong experimental test for this model

    Geometrical approach to central molecular chirality: a chirality selection rule

    Full text link
    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, enantiomer or diastereoisomer.Comment: 10 page

    Algebraic structure of central molecular chirality starting from Fischer projections

    Full text link
    The construction of algebraic structure of central molecular chirality is provided starting from the empirical Fischer projections for tetrahedrons. A matrix representation is given and the algebra of O(4) orthogonal group for rotations and inversions is identified. The result can be generalized to chains of connected tetrahedrons.Comment: 15 page
    • 

    corecore