36 research outputs found
Quantum flutter of supersonic particles in one-dimensional quantum liquids
The non-equilibrium dynamics of strongly correlated many-body systems
exhibits some of the most puzzling phenomena and challenging problems in
condensed matter physics. Here we report on essentially exact results on the
time evolution of an impurity injected at a finite velocity into a
one-dimensional quantum liquid. We provide the first quantitative study of the
formation of the correlation hole around a particle in a strongly coupled
many-body quantum system, and find that the resulting correlated state does not
come to a complete stop but reaches a steady state which propagates at a finite
velocity. We also uncover a novel physical phenomenon when the impurity is
injected at supersonic velocities: the correlation hole undergoes long-lived
coherent oscillations around the impurity, an effect we call quantum flutter.
We provide a detailed understanding and an intuitive physical picture of these
intriguing discoveries, and propose an experimental setup where this physics
can be realized and probed directly.Comment: 13 pages, 9 figure
The roles of vicariance and isolation by distance in shaping biotic diversification across an ancient archipelago: evidence from a Seychelles caecilian amphibian
Š 2020 The Authors. Published by BMC. This is an open access article available under a Creative Commons licence.
The published version can be accessed at the following link on the publisherâs website: https://doi.org/10.1186/s12862-020-01673-wBackground
Island systems offer excellent opportunities for studying the evolutionary histories of species by virtue of their restricted size and easily identifiable barriers to gene flow. However, most studies investigating evolutionary patterns and processes shaping biotic diversification have focused on more recent (emergent) rather than ancient oceanic archipelagos. Here, we focus on the granitic islands of the Seychelles, which are unusual among island systems because they have been isolated for a long time and are home to a monophyletic radiation of caecilian amphibians that has been separated from its extant sister lineage for ca. 65â62âMa. We selected the most widespread Seychelles caecilian species, Hypogeophis rostratus, to investigate intraspecific morphological and genetic (mitochondrial and nuclear) variation across the archipelago (782 samples from nine islands) to identify patterns and test processes that shaped their evolutionary history within the Seychelles.
Results
Overall a signal of strong geographic structuring with distinct northern- and southern-island clusters were identified across all datasets. We suggest that these distinct groups have been isolated for ca. 1.26âMaâyears without subsequent migration between them. Populations from the somewhat geographically isolated island of FrĂŠgate showed contrasting relationships to other islands based on genetic and morphological data, clustering alternatively with northern-island (genetic) and southern-island (morphological) populations.
Conclusions
Although variation in H. rostratus across the Seychelles is explained more by isolation-by-distance than by adaptation, the genetic-morphological incongruence for affinities of FrĂŠgate H. rostratus might be caused by local adaptation over-riding the signal from their vicariant history. Our findings highlight the need of integrative approaches to investigate fine-scale geographic structuring to uncover underlying diversity and to better understand evolutionary processes on ancient, continental islands.Funding for this research was provided by two grants from the National Science Foundation (BSR 88â17453, BSR 90â24505) [funding for fieldwork and lab work], two grants from the National Geographic Society (Grants 1977: 1633, 1743) [funding for fieldwork], three grants from the University of Michigan Office of the Vice President for Research, and a Research Partnership Award from the University of Michigan to RAN [morphology work]; a joint NHM-UCL IMPACT studentship [to fund STMâs PhD, lab work and fieldwork], Mohamed Bin Zayed Species Conservation Fund [funding for fieldwork] and Systematics Research Fund [funding for fieldwork] to STM; an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under Grant #P20GM103408 to LL [funding for lab work]; a NERC/BBSRC SynTax grant [funding for fieldwork and collaboration], and Darwin Initiative (grant 19â002) [funding for fieldwork, lab work and capacity building] with partners Bristol University, Islands Conservation Society, Seychelles Islands Foundation, Seychelles Ministry of Environment, Seychelles National Parks Authority, Seychelles Natural History Museum, University of Kent, Zoological Society of London to MW, DJG, JJD. The funding bodies played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.Published onlin
Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of cropâwild hybrids under drought, salinity and nutrient deficiency conditions
With the development of transgenic crop varieties,cropâwild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F2:3 families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F2:3 families and determined the allelic
contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na?, Cl- and
K?) were mapped on the nine linkage groups of lettuce.
Seven of the vigour QTLs had a positive effect from the
crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once cropâwild hybridization takes place