30 research outputs found

    Hypoxic stress increases NF-ÎşB and iNOS mRNA expression in normal, but not in keratoconus corneal fibroblasts

    Get PDF
    Background Keratoconus (KC) is associated with oxidative stress and hypoxia and as several times discussed, potentially with inflammatory components. Inflammation, hypoxia, and oxidative stress may result in metabolic dysfunction and are directly linked to each other. In the current study, we investigate the effect of hypoxia through NF-κB signaling pathways on iNOS, hypoxia-induced factors (HIF), ROS, and proliferation of normal and KC human corneal fibroblasts (HCFs), in vitro. Methods Primary human KC-HCFs and normal HCFs were isolated and cultured in DMEM/Ham’s F12 medium supplemented with 5% fetal calf serum. Hypoxic conditions were generated and quantitative PCR and Western blot analysis were performed to examine NF-κB, iNOS, HIF, and PHD2 expression in KC and normal HCFs. ROS level was analyzed using flow cytometry and proliferation by BrdU-ELISA. Results Hypoxia increased NF-κB mRNA and protein expression in normal HCFs, but in KC-HCFs NF-κB mRNA and protein expression remained unchanged. Hypoxic conditions upregulated iNOS mRNA expression of normal HCFs, but iNOS mRNA expression of KC-HCFs and iNOS protein expression of both HCF types remained unchanged. Hypoxia downregulated HIF-1α and HIF-2α mRNA expression in normal and KC-HCFs. PHD2 mRNA expression is upregulated under hypoxia in KC-HCFs, but not in normal HCFs. PHD2 protein expression was upregulated by hypoxia in both HCF types. Total ROS concentration is downregulated in normal and KC-HCFs under hypoxic conditions. Proliferation rate of KC-HCFs was upregulated through hypoxia, but did not change in normal HCFs. Conclusions Hypoxia increases NF-κB and iNOS mRNA expression in normal HCFs, but there does not seem to be enough capacity in KC-HCFs to increase NF-κB and iNOS mRNA expression under hypoxia, maybe due to the preexisting oxidative stress. HIF and PHD2 do not show altered iNOS regulation under hypoxic conditions in KC-HCFs, and therefore do not seem to play a role in keratoconus pathogenesis. An increased proliferation of cells may refer to compensatory mechanisms under hypoxia in KC. Understanding the mechanism of the altered regulation of NF-κB and iNOS in KC-HCFs will provide better insight into the potential inflammatory component of the KC pathogenesis

    NF-ÎşB, iNOS, IL-6, and collagen 1 and 5 expression in healthy and keratoconus corneal fibroblasts after 0.1% riboflavin UV-A illumination

    Get PDF
    Purpose To analyze the effect of riboflavin UV-A illumination on mRNA and protein expression of healthy (HCFs) and keratoconus human corneal fibroblasts (KC-HCFs), concerning the inflammatory markers NF-ÎşB, iNOS, IL-6, and collagen 1 and 5 (Col 1/Col 5). Methods Keratocytes were isolated from healthy (n = 3) and keratoconus (KC) corneas (n = 3) and were cultivated in basal medium with 5% fetal calf serum, which resulted in their transformation into human corneal fibroblasts (HCFs/KC-HCFs). Cells underwent 0.1% riboflavin UV-A illumination for 250 s (CXL). NF-ÎşB, iNOS, IL-6, Col 1, and Col 5 expression was investigated by qPCR and Western blot analysis. IL-6 concentration of the cell culture supernatant and cell lysate was determined by ELISA. Results In untreated KC-HCFs, NF-ÎşB (p = 0.0002), iNOS (p = 0.0019), Col 1 (p = 0.0286), and Col 5 (p = 0.0054) mRNA expression was higher and IL-6 expression was lower (p = 0.0057), than in healthy controls. In HCFs, CXL led to an increased NF-ÎşB (p = 0.0286) and IL-6 (p = 0.0057) mRNA expression. The IL-6 concentration in the cell culture supernatant was increased in HCFs (p = 0.0485) and KC-HCFs (p = 0.0485) after CXL. CXL increased intracellular IL-6 concentration only in KC-HCFs (p = 0.0357). In the HCF group (p = 0.0286), an increased Col 1 mRNA expression after CXL could be observed. Conclusion Our study confirmed altered gene expression in untreated KC-HCFs compared to untreated HCFs. Riboflavin UV-A illumination affected gene expression only in HCFs. Increased IL-6 concentration in the cell culture supernatant and cell lysate indicate a secondary inflammatory response of HCFs and KC-HCFs to riboflavin UV-A illumination

    Keratin 12 mRNA expression could serve as an early corneal marker for limbal explant cultures

    Get PDF
    This investigation aimed to identify early corneal marker and conjunctival epithelial differentiation through transcriptional analysis of limbal explant cultures and study early differentiation patterns of known corneal and conjunctival differentiation markers. 2 mm punch biopsies of limbal region were obtained from 6 donors of the Lions Cornea Bank Saar-Lorloux/Trier-Westpfalz. Limbal explants were dissected into corneal and conjunctival biopsy sections. Biopsies were placed with epithelial side down into 12 Wells. As soon as the outgrowing cells had reached confluence, they were harvested. mRNA expression of corneal differentiation markers KRT12, KRT3, DSG1, PAX6, ADH7 and ALDH1A1, conjunctival markers KRT19, KRT13 and stem cell marker ABCG2 were measured via qPCR. KRT12 and PAX6 protein expressions were evaluated using Western Blot. Results suggested that KRT12 mRNA expression was significantly higher in outgrowing cells from the corneal side of the biopsies as in those from the conjunctival side (p = 0.0043). There was no significant difference in mRNA expression of other analyzed markers comparing with marker expression of outgrown cells from both limbal biopsies (p > 0.13). KRT12 and PAX6 Western Blot analysis showed no difference in cells harvested from both sides. In conclusion, KRT12 mRNA might be a marker to measure corneal origin of cells from limbal biopsies with unknown composition of corneal and conjunctival progenitor cells. KRT3, DSG1, PAX6, ADH7, ALDH1A1, KRT19, KRT13 and ABCG2 mRNA as well as KRT12 and PAX6 protein expression could not contribute to differentiate corneal from conjunctival cell identity from limbal biopsies

    Altered Regulation of mRNA and miRNA Expression in Epithelial and Stromal Tissue of Keratoconus Corneas

    Get PDF
    Purpose: Evaluation of mRNA and microRNA (miRNA) expression in epithelium and stroma of patients with keratoconus. Methods: The epithelium and stroma of eight corneas of eight patients with keratoconus and eight corneas of eight non-keratoconus healthy controls were studied separately. RNA was extracted, and mRNA and miRNA analyses were performed using microarrays. Differentially expressed mRNAs and miRNAs in epithelial and stromal keratoconus samples compared to healthy controls were identified. Selected genes and miRNAs were further validated using RT-qPCR. Results: We discovered 170 epithelial and 1498 stromal deregulated protein-coding mRNAs in KC samples. In addition, in epithelial samples 180 miRNAs and in stromal samples 379 miRNAs were significantly deregulated more than twofold compared to controls. Pathway analysis revealed enrichment of metabolic and axon guidance pathways for epithelial cells and enrichment of metabolic, mitogen-activated protein kinase (MAPK), and focal adhesion pathways for stromal cells. Conclusions: This study demonstrates significant differences in the expression and regulation of mRNAs and miRNAs in the epithelium and stroma of Patients with KC. Also, in addition to the well-known target candidates, we were able to identify further genes and miRNAs that may be associated with keratoconus. Signaling pathways influencing metabolic changes and cell contacts are affected in epithelial and stromal cells of patients with keratoconus

    Similarities in DSG1 and KRT3 Downregulation through Retinoic Acid Treatment and PAX6 Knockdown Related Expression Profiles: Does PAX6 Affect RA Signaling in Limbal Epithelial Cells?

    Get PDF
    Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell defi ciency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells (LECs) and conjunctival epithelial cells. The aim of this study was to identify the role of retinol derivates in the differentiation of human LEC and its potential impact on aniridia-associated keratopathy development. Human LEC were isolated from healthy donor corneas and were cultured with retinol, retinoic acid, or pan-retinoic acid receptor antagonist (AGN 193109) acting on RARα, β, γ (NR1B1, NR1B2 NR1B3) or were cultured with pan-retinoid X receptor antagonist (UVI 3003) acting on RXR α, β, γ (retinoid X receptor, NR2B1, NR2B2, BR2B3). Using qPCR, differentiation marker and retinoid-/fatty acid metabolism-related mRNA expression was analysed. DSG1 (Desmoglein 1), KRT3 (Keratin 3), and SPINK7 (Serine Pepti dase Inhibitor Kazal Type 7) mRNA expression was downregulated when retinoid derivates were used. AGN 193109 treatment led to the upregulation of ADH7, KRT3, and DSG1 mRNA expression and to the downregulation of KRT12 (Keratin 12) and KRT19 (Keratin 19) mRNA expression. Retinol and all-trans retinoic acid affect some transcripts of corneal LEC in a similar way to what has been observed in the LEC of PAX6-aniridia patients with the altered expression of differentiation markers. An elevated concentration of retinol derivatives in LEC or an altered response to retinoids may contribute to this pattern. These initial findings help to explain ocular surface epithelia differentiation disorders in PAX6-aniridia and should be investigated in patient cells or in cell models in the future in more detail

    Identification of the regulatory circuit governing corneal epithelial fate determination and disease.

    Get PDF
    The transparent corneal epithelium in the eye is maintained through the homeostasis regulated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain unknown. We performed a multi-omics analysis of human LSCs from the cornea and keratinocytes from the epidermis and characterized their molecular signatures, highlighting their similarities and differences. Through gene regulatory network analyses, we identified shared and cell type-specific transcription factors (TFs) that define specific cell fates and established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the shared and LSC-specific TFs can cooperatively target genes associated with corneal opacity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate associated with corneal opacity, and it regulates genes implicated in corneal diseases. By characterizing molecular signatures, our study unveils the regulatory circuitry governing the LSC fate and its association with corneal opacity

    Similarities in DSG1 and KRT3 Downregulation through Retinoic Acid Treatment and PAX6 Knockdown Related Expression Profiles: Does PAX6 Affect RA Signaling in Limbal Epithelial Cells?

    No full text
    Congenital PAX6-aniridia is a rare panocular disease resulting from limbal stem cell deficiency. In PAX6-aniridia, the downregulation of the retinol-metabolizing enzymes ADH7 (All-trans-retinol dehydrogenase 7) and ALDH1A1/A3 (Retinal dehydrogenase 1, Aldehyde dehydrogenase family 1 member A3) have been described in limbal epithelial cells (LECs) and conjunctival epithelial cells. The aim of this study was to identify the role of retinol derivates in the differentiation of human LEC and its potential impact on aniridia-associated keratopathy development. Human LEC were isolated from healthy donor corneas and were cultured with retinol, retinoic acid, or pan-retinoic acid receptor antagonist (AGN 193109) acting on RARα, β, γ (NR1B1, NR1B2 NR1B3) or were cultured with pan-retinoid X receptor antagonist (UVI 3003) acting on RXR α, β, γ (retinoid X receptor, NR2B1, NR2B2, BR2B3). Using qPCR, differentiation marker and retinoid-/fatty acid metabolism-related mRNA expression was analysed. DSG1 (Desmoglein 1), KRT3 (Keratin 3), and SPINK7 (Serine Peptidase Inhibitor Kazal Type 7) mRNA expression was downregulated when retinoid derivates were used. AGN 193109 treatment led to the upregulation of ADH7, KRT3, and DSG1 mRNA expression and to the downregulation of KRT12 (Keratin 12) and KRT19 (Keratin 19) mRNA expression. Retinol and all-trans retinoic acid affect some transcripts of corneal LEC in a similar way to what has been observed in the LEC of PAX6-aniridia patients with the altered expression of differentiation markers. An elevated concentration of retinol derivatives in LEC or an altered response to retinoids may contribute to this pattern. These initial findings help to explain ocular surface epithelia differentiation disorders in PAX6-aniridia and should be investigated in patient cells or in cell models in the future in more detail

    SUMOylation of the nuclear pore complex basket is involved in sensing cellular stresses

    Get PDF
    International audienceThe nuclear pore complex (NPC) is the major conduit for nucleocytoplasmic transport and serves as a platform for gene regulation and DNA repair. Several nucleoporins undergo ubiquitylation and SUMOylation, and these modifications play an important role in nuclear pore dynamics and plasticity. Here, we perform a detailed analysis of these post-translational modifications of yeast nuclear basket proteins under normal growth conditions as well as upon cellular stresses, with a focus on SUMOylation. We find that the balance between the dynamics of SUMOylation and deSUMOylation of Nup60 and Nup2 at the NPC differs substantially, particularly in G1 and S phase. While Nup60 is the unique target of genotoxic stress within the nuclear basket that probably belongs to the SUMO-mediated DNA damage response pathway, both Nup2 and Nup60 show a dramatic increase in SUMOylation upon osmotic stress, with Nup2 SUMOylation being enhanced in Nup60 SUMO-deficient mutant yeast strains. Taken together, our data reveal that there are several levels of crosstalk between nucleoporins, and that the post-translational modifications of the NPC serve in sensing cellular stress signals
    corecore