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Abstract

The transparent corneal epithelium in the eye is maintained through the homeostasis regu-

lated by limbal stem cells (LSCs), while the nontransparent epidermis relies on epidermal

keratinocytes for renewal. Despite their cellular similarities, the precise cell fates of these

two types of epithelial stem cells, which give rise to functionally distinct epithelia, remain

unknown. We performed a multi-omics analysis of human LSCs from the cornea and kerati-

nocytes from the epidermis and characterized their molecular signatures, highlighting their

similarities and differences. Through gene regulatory network analyses, we identified

shared and cell type-specific transcription factors (TFs) that define specific cell fates and

established their regulatory hierarchy. Single-cell RNA-seq (scRNA-seq) analyses of the

cornea and the epidermis confirmed these shared and cell type-specific TFs. Notably, the

shared and LSC-specific TFs can cooperatively target genes associated with corneal opac-

ity. Importantly, we discovered that FOSL2, a direct PAX6 target gene, is a novel candidate

associated with corneal opacity, and it regulates genes implicated in corneal diseases. By

characterizing molecular signatures, our study unveils the regulatory circuitry governing the

LSC fate and its association with corneal opacity.

Introduction

Cell fate determination is a complex process essential for normal development and homeosta-

sis. The key role of transcription factors (TFs) in this process has been demonstrated by a
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plethora of seminal studies where cell conversions can be achieved by forced expression of spe-

cific sets of TFs, e.g., generation of induced pluripotent stem cells [1,2]. TFs control cell fate

determination by regulating the transcriptional program, through binding to cis-regulatory

elements (CREs) on the DNA and by modifying the chromatin environment [3,4]. This precise

control is essential for tissue integrity and tissue-specific function, and deregulation often

leads to pathological conditions [5,6].

The corneal epithelium in the eye and the skin epidermis are 2 types of stratified epithelia,

both derived from the surface ectoderm during embryonic development. The human corneal

epithelium is the outermost layer of the cornea, supported by underlying stroma and endothe-

lium, protecting the eye from the outside environment [7–9]. It is avascular and transparent,

which allows the light into the eye. The proper structure and function of the corneal epithe-

lium are maintained by limbal stem cells (LSCs), located in the limbus, at the rim of the cornea.

Differentiating LSCs move centrally to form basal epithelial cells and stratify to form differenti-

ated epithelial layers [10]. Similar to the corneal epithelium in barrier function, the skin epi-

dermis, on the other hand, is nontransparent. The homeostasis of the epidermis is controlled

by keratinocytes (KCs) in the basal layer of the epidermis. Basal KCs differentiate vertically

and outwards to form different strata of the epidermis [7]. Both LSCs and KCs are similar in

their cellular morphology, even indistinguishable when cultured in vitro, and share expression

of basal epithelial genes such as KRT5 and KRT14. Nevertheless, their cell fates are intrinsically

distinct, as they initiate and maintain specific epithelial differentiation programs that give rise

to the transparent corneal epithelium and nontransparent epidermis, respectively. Insights

into the comparison between cell fates of LSCs and KCs will shed light on the control mecha-

nism of their cellular function and related pathological conditions, e.g., corneal opacity. So far,

however, the cell fate similarities and differences between KCs and LSCs controlled by TFs and

their associated epigenetic mechanisms are not yet understood.

In KCs and the epidermis, key TFs have been studied extensively, both in vitro and in vivo

[11–14]. Key TFs include p63, GRHL family proteins, KLF4 and ZNF750, which all regulate

transcriptional programs important for KC proliferation and differentiation [12,13,15,16].

Many of these TFs, often working together, are known to modulate the chromatin landscape

through enhancers [12,13,16]. The TF p63 encoded by TP63 is a key regulator of stratified epi-

thelia and is important for the commitment, proliferation, and differentiation of KCs [13]. It

binds mainly to enhancers and maintains the epigenetic landscape for the proper epidermal

cell identity [16–18]. Mutations in TP63 are associated with developmental disorders like

ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome (OMIM 604292). In

EEC, patients present defects in ectodermal derivatives, e.g., epidermis, hair follicles, and nails,

but also in other epithelium-lined tissues such as the cornea [19–21]. The disease phenotypes

of TP63mutation-associated disorders are consistent with p63 expression in stratified epithelia

[19–21]. It has been shown that loss of the typical epidermal identity due to rewired epigenetic

circuitry is characteristic of KCs carrying TP63mutations associated with EEC [16].

As compared to the wealth of molecular insights of TFs in KCs, the control mechanism of

TFs in the corneal epithelium and LSCs is less understood. One of the better-studied TFs is the

eye master regulator PAX6. PAX6 is essential for the specification and determination of differ-

ent parts of the eye, including the retina, iris, lens, and cornea [22–24]. In the retina and lens,

PAX6 interacts with chromatin modifiers such as EZH2, and cooperates with and regulates

other TFs to define cell fates [25–27]. In LSCs of the cornea, PAX6 binds to enhancers,

together with TFs such as RUNX1 and SMAD3, important for controlling the LSC identity

[23,28–32].

Mutations and deregulation of PAX6 are associated with aniridia (OMIM 106210), a disor-

der initially characterized by an absent or underdeveloped iris, among other phenotypes such
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as defects in the retina, pancreas, and neurological systems [33], which is consistent with

PAX6 expression in these tissues and organs [24]. Relevant to the cornea, up to 90% of aniridia

patients show progressive limbal stem cell deficiency (LSCD) leading to corneal opacities

[31,34]. Interestingly, LSCD and corneal opacities are also present in over 60% of patients with

TP63mutation-associated EEC syndrome [35,36]. In addition to PAX6 and p63, another TF

that has been associated with corneal abnormalities is FOXC1, of which mutations are

involved in the spectrum of anterior segment dysgenesis, including Peters anomaly and Axen-

feld–Rieger syndrome (OMIM 602482) [37]. FOXC1 is expressed in the epithelium, stromal,

and endothelial cells of the cornea and is shown to be upstream and regulating PAX6 [38,39].

Recently, 2 reports suggested that loss of PAX6 or FOXC1 in LSCs gives rise to loss of the LSC

identity, and these PAX6 or FOXC1-deficient LSCs acquire a KC-like cell signature, indicated

by up-regulated expression of epidermal stratification marker genes [30,39,40]. How TFs like

PAX6, p63, and FOXC1 regulate their target genes in LSCs and how their mutations give rise

to LSCD and corneal opacities are not yet fully understood. Therefore, a comprehensive char-

acterization and comparison of molecular signatures between LSCs and KCs will not only

identify shared and tissue-specific TFs controlling cell fates but also provide insights into the

pathomechanisms of LSCD and other corneal opacity disease mechanisms.

In this study, we performed in-depth analyses of the transcriptome and the epigenome of

human LSCs and KCs cultured in vitro and characterized differentially expressed genes and

regulatory regions between the 2 cell types. Using a gene regulatory network-based method,

we identified key TFs and their hierarchy controlling epithelial programs that are shared by

KCs and LSCs and those that are distinct for each cell type. Expression patterns of the key TFs

were further validated with in vivo single-cell RNA-seq (scRNA-seq) data from the cornea and

the epidermis. Importantly, we showed that the key TFs and their target genes that drive the

LSC-specific epithelial program are associated with corneal diseases and identified a novel dis-

ease candidate FOSL2 associated with corneal opacity.

Results

Distinct epithelial gene expression patterns define cell fate differences of

skin keratinocytes and cornea limbal stem cells

To characterize gene expression patterns that define the cell fate difference between human

cornea LSCs and human skin KCs (Fig 1A), we used cultured LSCs established from post mor-

tem limbal biopsies and basal KCs from skin donors. Both cultured cells have the capacity to

regenerate stratified epithelial tissues in vitro [41,42] and have high p63 expression (S1 Fig),

thus exhibiting the progenitor cell state. We performed comparative RNA-seq analyses from

bulk and pseudobulk RNA-seq data (aggregated from scRNA-seq using cultured LSCs and

KCs) experiments and incorporated our data with publicly available RNA-seq data for robust-

ness (S1 Table) (S1 Fig) [16,32]. Single-cell data was aggregated because no measurable hetero-

geneity was detected in these cultured cells, except for cell cycle differences (S1E Fig).

Through pairwise comparison, we identified 1,251 differential expressed genes between

LSCs and KCs. Among them, 793 genes had higher expression in LSCs (referred to as LSC-

high genes), while 459 differential genes were more highly expressed in KCs (referred to as

KC-high genes). This analysis resulted in typical genes for both epithelial cell types: LSC-high

genes with limbal and corneal epithelial genes including KRT19 and the eye master regulator

PAX6 (Figs 1B and S1F), whereas KC-high genes contained epidermal markers such as KRT1,

KRT10, LCE3D, and LCE3C. Although some of these detected genes are associated with epithe-

lial stratification, e.g., KRT3 and KRT12 for the cornea and KRT1 and KRT10 for the epider-

mis, their expression was significantly lower (5- to 20-fold) than their expression in stratified
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epithelial cells [16,39] (S1G Fig), confirming the progenitor states of the cultured LSCs and

KCs. It should be noted that TP63 is highly expressed in both LSCs and KCs (S1F Fig), and

therefore is not identified as differential.

Fig 1. RNA-seq analysis of LSCs and KCs. (A) Schematic picture of the epidermis and the limbus. (B) Heatmap of

normalized expression of differentially expressed genes between LSCs and KCs (adjusted pval< 0.01, log2 FC> 1.5).

Differentially expressed genes are clustered using k-means clustering with 2 clusters. (C) GO term enrichment of KC-

high genes. (D) GO term enrichment of LSC-high genes. (E) PROGENy pathway activity analysis, with scores sorted

based on the LSC/KC ratio. Pathways depicted in red are differential, the color is gray if non-differential, orange if

higher in LSC, and purple if higher in KCs. (F) GSEA of differentially expressed genes identified in aniridia patient

LSCs, as compared to controls, up- and down-regulated genes (aniridia high and low, respectively) were tested for

enrichments against the KC-LSC fold change. For all underlying data, see S4 Table, GEO GSE206922, GSE206923, and

GSE242995. GO, Gene Ontology; GSEA, gene set enrichment analysis; KC, keratinocyte; LSC, limbal stem cell.

https://doi.org/10.1371/journal.pbio.3002336.g001
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Gene Ontology (GO) enrichment analysis [43,44] of KC-high genes identified enrichment

of GO terms related to the “epidermis” and “skin development” (Fig 1C). GO terms associated

with “response to virus” were enriched due to detected immune and interferon-related genes

among KC-high genes, consistent with the gene set enrichment analysis (GSEA) using the hall-

mark gene set of the MsigDB collection [45,46] that identified enrichment of the interferon-

alpha and gamma response (S4 Table). Finally, PROGENy pathway target gene analysis [47]

identified higher VEGF signaling in KCs (Fig 1E), indicating that VEGF vascularization-

related genes are lowly expressed or completely repressed in LSCs. This is in line with the avas-

cularized state of the cornea. LSC-high genes were enriched for terms such as “wound healing”

and “positive regulation of body fluid levels” as well as “visual system development” and “regu-

lation of nervous system development” (Fig 1D). PROGENy analysis identified the TNF-α and

NFKβ pathways associated with LSCs (Fig 1E), such as CXCL1,3,5,6 and TNF-α. Consistently,

TNF-α and NF-kB signaling was also identified by KEGG pathway [48], GO, and GSEA analy-

ses using the hallmark gene set of the MsigDB collection (S2 Fig). Finally, GSEA enrichment

using the C8 dataset of the MsigDB collection that contains single-cell dataset gene lists also

identified enrichment for genes in the “Descartes fetal eye corneal and conjunctival epithelial

cells” (S4 Table) with more signal in the LSCs.

Next, we asked the question of whether LSCD-associated LSCs acquire a KC-like cell fate.

To test this, we examined the cell fate of LSCs from patients with aniridia, a disease mostly

caused by PAX6 haploinsufficiency. We performed RNA-seq analysis of primary LSCs of 2

aniridia patients and postmortem cornea-extracted LSC controls. Aniridia and control LSCs

were both expanded in keratinocyte serum-free medium (KSFM) conditions and were on pas-

sage 3 when processed. These data were integrated with other aniridia RNA-seq data published

previously using the same procedures and culture conditions [49] (S1 Table). We obtained 73

differentially down-regulated genes (aniridia low genes) and 22 up-regulated genes (aniridia

high genes) in aniridia patient LSCs, as compared to LSCs from healthy controls (S3 Fig).

Aniridia low genes included the PAX6 target gene KRT12 and other corneal and epithelial

genes such as TGFBI, CLND1, GJB6, IL36G, LAYN, NMU, and TMEM47. Many of these epi-

thelial genes are potential PAX6 target genes reported in an immortalized LSC model where 1

allele of PAX6 was deleted [50]. We then applied GSEA to compare them to LSC and KC gene

expression signatures, to investigate whether these deregulated genes due to PAX6 haploinsuf-

ficiency represent the changed cell fate of these aniridia LSCs. Indeed, as expected, aniridia

low genes were enriched among genes expressed highly in LSCs (P-value 0.000028) (Fig 1F),

indicating a loss of the LSC cell fate in aniridia LSCs. Among aniridia high genes, we found

GATA3 present in genes expressed highly in KCs (S3 Fig). Nevertheless, there was no detected

enrichment of aniridia high genes among genes expressed highly in KCs representing the KC

cell fate, arguing against the postulated model that PAX6-deficient LSCs acquire a KC-like cell

fate at the transcriptome level. These data suggest that additional mechanisms, such as TFs

other than PAX6, contribute to the cell fate difference between KCs and LSCs.

The epigenetic states of cis-regulatory elements correlate with gene

expression patterns

To understand the mechanisms underlying different cell fate controls of LSCs and KCs, we

identified CREs and their epigenetic states that drive gene expression differences. We gener-

ated an extensive multi-omics dataset of LSCs and KCs and integrated these with other pub-

lished data (S4A Fig and S2 and S3 Tables).

The complete dataset included ATAC-seq for open chromatin regions representing CREs

[32] and ChIP-seq of histone modifications, H3K27ac and H3K4me3 marking active CREs,
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and H3K27me3 that marks repressed chromatin regions (Fig 2A) [17,32]. Using ATAC-seq

analysis, we identified 124,062 CREs in the 2 cell types. Approximately 80% of these CREs

were accessible in both cell types (S5 Fig). The public ATAC-seq data was compared to the

data generated using Pearson correlation (S5F Fig). This comparison revealed a distinct bio-

logical difference between KCs and LSCs, which was more prominent than technical variation

across different laboratories and techniques.

To examine the differential epigenetic states of these CREs in LSCs and KCs, we quantified

ATAC-seq and histone modification signals in windows covering these CREs (Fig 2A). This

resulted in 35,348 CREs with differential epigenetic signals, about 28.5% of CREs (S5 Fig). To

assess the correlation between these differential CREs and the expression of their nearby

genes, we considered both CREs at the promoter regions (promoter CREs) and enhancer

CREs located within 50-kb distance from the genes (enhancer CREs) (Figs 2B and S4B). As

expected, high ATAC, H3K4me3, and H3K27ac signals correlated with high gene expression,

while the strong signals of repressive H3K27me3 correlated well with lowly expressed genes or

genes with undetectable expression in the corresponding cell types, e.g., the loci of PAX6,

GATA3,HOXA9, and TNF-α (Figs 2B, 2D and S4D). The strong repression signals marked by

H3K27me3 in KCs at genes that are key for the LSC fate such as PAX6 suggest a repression

mechanism in KCs to prevent inappropriate gene expression that defines the LSC fate. All

annotated CRE regions are available on a publicly accessible trackhub [51] (see Data

availability).

Next, we performed GO analysis on genes that are close to differential CREs (Fig 2C). For

H3K27ac and H3K4me3 that mark active CREs, GO terms such as “epidermis” and “skin

development” were identified for CREs with strong signals in KCs. Furthermore, “positive reg-

ulation of cell adhesion” and “extracellular matrix organization” terms were found for CREs

with strong H3K27ac and H3K4me3 signals in LSCs. This is consistent with identified differ-

entially expressed genes in each corresponding cell type. In contrast, the repressive mark

H3K27me3 is anti-correlated with gene expression (Fig 2C).

Furthermore, in line with the enrichment of TNF-α and NF-kB signaling pathways in LSCs

identified by PROGENy analysis of differentially expressed genes, higher H3K27ac and

H3K4me3 signals were present in the loci of TNF-α and NF-kB target genes in LSCs, as com-

pared to in KCs, while these loci in KCs were repressed by H3K27me3 (S4C Fig).

Gene regulatory network analysis identifies transcription factors

controlling distinct epithelial cell fates and their hierarchy

Using the identified differential CREs, we set out to identify key TFs driving the cell fate differ-

ences between LSCs and KCs. TF-binding motif enrichment was performed using Gimme

Motifs [52] in all differential CREs marked by ATAC, H3K4me3, H3K27ac, and/or

H3K27me3 signals. In general, TF motifs enriched in CREs with active marks, ATAC,

H3K4me3, or H3K27ac, in 1 cell type, were also enriched within regions with the repressive

H3K27me3 mark in the other cell type (Figs 3A and S6A). For example, TF motifs that are

linked to FOXC1, TEAD1, JUN, PAX6, FOS, RUNX2, OTX1, ELF3, SOX9, and REL were

detected in differential CREs marked by high active mark signals in LSCs but also marked by

high H3K27me3 in KCs. Consistent with our expectation, the enrichment of the PAX6 motif

in differential CREs with higher active mark signals was detected in LSCs, as PAX6 is specific

for LSCs but not for KCs. As REL is a TF involved in TNF-α and NF-kB pathways, the detec-

tion of the REL motif is consistent with the enrichment of TNF-α and NFKβ signaling genes

among LSC-high genes. Notably, the FOS motif that is associated with FOS, FOSL1, FOSL2,

and JUN (S6A Fig) was present in approximately 10% of all variable CREs in LSCs, the highest
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Fig 2. CRE analysis. (A) Schematic overview of CRE identification and quantification. Signals of each analysis were quantified by

different window sizes covering the ATAC-seq peak summit. (B) Heatmap of the Z-scores of the quantile normalized ATAC-seq and

histone mark signals near LSC- and KC-high genes. For promoter CREs, it corresponds to the closest CRE within 20 kb to the TSS. For

enhancer CREs, the signals of all CREs within a 100-kb window near a TSS were quantified, distance weighted, and summed. (C) GO

term enrichment of LSC- and KC-high genes and genes close (within 20 kb) to differential CREs. (D) PAX6 and GATA4 TSS loci with

signals of RNA-seq, ATAC-seq, ChIP-seq of H3K27ac, H3K4me3, and H3K27me3 in KCs and LSCs. For the underlying data, see S5

Table, GEO GSE206918, GSE206920, and the trackhub in the Zenodo entry [51]. CRE, cis-regulatory element; KC, keratinocyte; LSC,

limbal stem cell; TSS, transcription start site.

https://doi.org/10.1371/journal.pbio.3002336.g002
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Fig 3. TFs and TF hierarchy controlling distinct epithelial cell identity. (A) Heatmap of motif enrichment Z-scores

detected in variable CREs and the corresponding TFs. The percentage of CREs containing the motifs and the

expression ratio of TFs in LSCs and KCs are indicated. (B) ANANSE influence score plot of TFs identified in ESC-KC

(x-axis) and ESC-LSC (y-axis) comparison. Circle size represents the maximum number of target genes of a TF. The

color represents log2FC between LSC/KC (orange LSC high; purple KC high). (C) ANANSE influence score plot of

TFs identified in KC-LSC comparison. (D) ANANSE influence score plot of TFs identified in LSC-KC comparison. (E)

TF hierarchy is indicated by the binding score of a TF to its target TF locus, and the cell type-specific regulation is

indicated by the binding score difference of the TF at the target TF locus between cell types. When a binding score

difference in KC-LSC comparison is greater than the mean of the difference in ESC-KC and ESC-LSC comparison,

this TF regulation of the target TF is annotated as either KC- (purple arrows) or LSC-specific (orange arrows)

regulation. Otherwise, the regulation is annotated as “shared regulation” for both cell types (gray arrows). The degree
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among all motifs (Fig 3A). Motifs enriched in KC active CREs included those linked to KLF6,

GRHL1, HOXC10, GATA3, NFIA, CEBPA, and CTCF. These motifs were also enriched in

CREs marked by high H3K27me3 signals in LSCs. Enriched motifs could mostly be linked to

TFs with high expression differences between LSCs and KCs, e.g., FOXC1, PAX6, and FOS are

highly expressed in LSCs, while HOXC10, GATA3, and CEBPA are highly expressed in KCs

(Fig 3A).

To predict gene regulation by considering the expression of both TFs and their targets, we

applied ANANSE [53], a gene regulatory network method to identify key TFs for cell identi-

ties. ANANSE integrates CRE activities and TF motif predictions with the expression of TFs

and their target genes to generate a gene regulatory network of the specific cell type. Subse-

quently, a pairwise comparison of gene regulatory networks from 2 cell types is performed to

identify the most influential TFs that differentiate between the 2 cell types. The overall impor-

tance of identified TFs is represented by their influence score, scaled from 0 to 1 (Materials

and methods) [53].

Because many key TFs for LSC and KC fates that are shared in these 2 cell types such as p63

had similar gene expression levels (S1F Fig), these TFs could not be identified through a direct

comparison of the differential gene regulatory network between these 2 cell types using ANA-

NSE. Therefore, we decided to utilize embryonic stem cells (ESCs), a completely different cell

type as compared to either LSCs or KCs, as the reference point for this differential network anal-

ysis. This enabled us to identify not only distinct but also shared TFs for LSC and KC fates.

Using RNA-seq, ATAC-seq, and H3K27ac data from ESCs [54], we performed a pairwise com-

parison of gene regulatory networks between ESCs versus KCs or ESCs versus LSCs. When pre-

dicting the TFs driving the LSC or KC fates from ESCs, ANANSE resulted in 70 epithelial TFs

that had influence scores above 0.5 in both ESC-LSC and ESC-KC pairwise differential network

analysis. Many TFs are known to be important for epithelial cell function, such as TP63, EHF,

TFAP2A, TFAP2C, FOSL2, the KLF family protein 3,4,5,6,7, JUNB, CEBPD, CEBPB, and

RUNX1. We classified these TFs as shared epithelial TFs (Figs 3B and S7). Intriguingly, when

conducting a network outdegree analysis that quantifies the number of targets of a TF within

the top 20 TFs, FOSL2, JUN, TP63, and TFAP2A were identified as regulating most other TFs.

This implies their importance in driving other TF expression (S7B and S7C Fig). The highest

outdegree of FOSL2 is in line with the high percentage of detected FOS motif (Fig 3A).

Importantly, in the ESC-LSC and ESC-KC differential network analysis, TFs with high

influence scores in LSCs but with undetectable (PAX6, ELF3, OTX1, PPARD) or low (FOSL1

and SMAD3) influence scores in KCs were considered as LSC-specific TFs (Fig 3B). Direct

pairwise differential network analysis between LSCs and KCs (Fig 3C) was largely consistent

with these findings. Interestingly, FOXC1 was annotated as a shared epithelial TF, whereas in

the direct KC-LSC comparison, it was identified as a specific TF for the LSC fate. This is proba-

bly due to the higher expression of FOXC1 in LSCs. For KC-specific TFs, we only identified

HOXA9 in the ESC-LSC and ESC-KC differential network analysis (Fig 3B). The direct pair-

wise differential network analysis between KCs and LSCs (Fig 3D) confirmed this. Next to

HOXA9, the direct comparison identified other TFs such as GATA3, IRX4, and CEBPA with

high influence scores in KCs, indicating that KC-LSC pairwise comparison is more sensitive

for detecting KC-specific TFs.

of binding score difference is indicated by the thickness of the arrows. Outdegree node size represents the number of

target genes. Fold change of TF gene expression in LSC and KCs is represented by orange (LSC-high) and purple (KC-

high) colors. For the underlying data, see the Zenodo entry [51]. CRE, cis-regulatory element; ESC, embryonic stem

cell; KC, keratinocyte; LSC, limbal stem cell; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3002336.g003
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Finally, we set out to dissect the TF regulatory hierarchy for the cell identity differences

between LSCs and KCs, by identifying potential target TFs of the shared and specific TFs. For

this analysis, we did not consider the expression level of TFs themselves, to ensure that the pre-

diction is mainly driven by the potential binding of a TF to its target loci, represented by the

binding score. If a target TF is regulated by a TF with similar binding scores in both LSCs and

KCs compared to ESCs, this regulation is annotated as a “shared regulation”; if the binding

score is significantly higher in one cell type than in the other (Materials and methods), the reg-

ulation of the TF-target TF pair is annotated as “cell type-specific regulation.” We included the

top shared and specific TFs, 15 shared epithelial TFs, 6 LSC specific TFs (PAX6, ELF3, OTX1,

PPARD, SMAD3, and FOSL1), and the KC-specific TF HOXA9 (Figs 3B, 3E, S6B, S6C and

S6D). As expected, many shared TFs are regulating each other via “shared regulation” (Fig 3E,

gray arrows). Consistently, cell type-specific TFs regulate their target TFs via “cell type-specific

regulation” (Fig 3E, orange arrows), e.g., PAX6 is predicted to be regulated by SMAD3 and

PPARD. Furthermore, many autoregulation loops were also detected, e.g., PAX6 in LSCs and

HOXA9 in KCs. We also found that shared TFs may regulate cell type-specific TFs via “cell

type-specific regulation.” For example, p63, FOXC1, and TFAP2A were identified as shared

TFs between KCs and LSCs, but they were predicted to regulate PAX6 in LSCs.

In summary, our molecular characterization using KCs and LSCs cultured in vitro identi-

fied shared and cell type-specific TFs for the LSC and KC fates. p63, FOSL2, EHF, TFAP2A,

KLF5, RUNX1, CEBPD, and FOXC1 are among the shared epithelial TFs for both LSCs and

KCs. PAX6, SMAD3, OTX1, ELF3, and PPARD are LSC specific TFs for the LSC fate, and

HOXA9, IRX4, CEBPA, and GATA3 were identified as KC-specific TFs. Furthermore, LSC

and KC fates are defined by cooperative regulation of both shared and cell type-specific TFs.

Single-cell RNA-seq analysis of the cornea and the epidermis validates the

expression of key transcription factors controlling cell fates

Since our multi-omics analysis was performed on LSCs and KCs cultured in vitro, we assessed

scRNA-seq datasets derived from the cornea and the epidermis to confirm that the molecular

signatures of LSCs and KCs in our study indeed represent those of epithelial stem cells main-

taining the corneal limbus and the epidermis [55,56]. By clustering single cells according to

marker gene expression (S8 Fig), we selected the cell clusters corresponding to the stem cells as

pseudobulk for further differential gene expression analysis. For the epidermis, we selected

cells with high KRT14, KRT5, and low KRT1 and KRT10 expression as basal KCs, and for the

cornea, cells with high S100A2, PAX6, and TP63 expression and without CPVL expression as

LSCs, because CPVL has been proposed as a marker with neural crest origin [56].

Consistent with the in vitro findings, the in vivo LSCs expressed high levels of PAX6, ELF3,
FOXC1, FOSL1,OTX1, and SMAD3, whereas the in vivo KCs expressed high levels ofHOXA9,
CEBPA, andGATA3 (Fig 4A). GO analysis identified similar functions of differentially expressed

genes between the in vivo LSCs and KCs, as compared to those from in vitro cultured cells (S8E

and S8F Fig). Furthermore, PROGENy analysis of differentially expressed genes between in vivo

LSCs and KCs showed that TNF-α and NF-kB pathway genes are significantly enriched in in vivo

LSCs, e.g., CXCL1,2,3,8,20 andNFKB1 (Fig 4B). GSEA analysis using the hallmark gene set of the

MsigDB collection also identified enrichment for TNF-α signaling genes (S5 Table).

As the data of CREs of in vivo tissues were not available, we utilized the in vitro ATAC and

H3K27ac datasets for differential gene regulatory network analysis, together with the in vivo

pseudobulk data used for gene expression analysis above. Here, we assumed that, since the

GRN analysis is largely driven by gene expression data, this analysis assessed the influence of

TFs on in vivo LSC and KC fate differences. Overall, the in vivo data identified similar cell
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type-specific TFs, as compared to in vitro cultured cells (Fig 4C and 4D). In in vivo LSCs,

PPARD however was not detected, PAX6, ELF3 FOXC1, and FOSL1 exhibited the highest

influence scores, and TFs with the highest influence scores in in vivo basal KCs were HOX TFs

and a few others such as CEBPA, GATA3, and IRX4.

Fig 4. Validation of key TF expression using in vivo scRNA-seq. (A) Fold change comparison of identified TFs using in vivo and in

vitro data. (B) PROGENy pathway analysis of in vivo LSCs and KCs. (C) ANANSE influence score plot of in vivo basal KCs to LSCs. (D)

ANANSE influence score plot of in vivo LSC to basal KCs. (E) Summary of the identified shared and specific TFs. For the underlying

data, see S6 Table, GEO GSE155683, GSE147482 [55,56], and the Zenodo entry [51]. KC, keratinocyte; LSC, limbal stem cell; scRNA-seq,

single-cell RNA-seq; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3002336.g004
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Taken together, our analyses showed clear consistency between in vivo and in vitro derived

data and identified key TFs driving the cell fate of between LSCs and KCs (Fig 4E).

FOSL2 is a novel transcription factor controlling the LSC fate and

associated with corneal opacity

As several key TFs defining the LSC fate, either shared or cell type specific, such as p63 and

PAX6, respectively, are associated with corneal opacity, we explored the potential involvement

of LSC TFs in the pathomechanism of corneal diseases. For this, we leveraged the whole

genome sequencing data in the 100,000 Genomes Project at Genomics England UK to identify

variants of uncertain significance that may have functional consequences. For establishing a

suitable cohort, we identified a total number of 33 unsolved participants with human pheno-

type ontology (HPO) terms associated with corneal opacity (S8 Table). Next, we screened for

variants in the coding regions of the top 15 shared epithelial TFs as well as the 6 LSC-specific

TFs identified in our study. In a proband with band keratopathy (HP:0000585), we identified a

rare de novo heterozygous missense variant in FOSL2 (2:28412095:C:T, genome build

GRCh38/hg38, NM_005253.4:c.628C>T) (genomAD allele frequency 0.0000922) (S9A Fig),

giving rise to a predicted damaging amino acid change (NP_005244.1:p.(Arg210Cys)), based

on most major prediction tools (S9A Fig and S9 Table).

As the role of FOSL2 in LSCs is completely unknown, we first investigated the protein

expression of FOSL2 within the cornea. The immunostaining results showed that FOSL2 pro-

tein is expressed in both limbus and central cornea (Figs 5A and S9B), co-localizing in the

nucleus with other LSC TFs, e.g., p63, PAX6, and its closely related AP1 complex factor FOSL1

(S9C–S9F Fig). The same was also visible in LSCs (and KCs, with the exception of PAX6) cul-

tured in vitro (S9G–S9J Fig). The identified variant associated with corneal opacity, together

with the expression pattern, indicated an important function of FOSL2 in the cornea.

To further explore the association of FOSL2 with corneal diseases, we questioned whether

the target genes of FOSL2 are enriched for corneal disease genes, similar to other known LSC

TFs such as PAX6, FOXC1, and p63. The rationale behind this question is based on the concept

that many disease-associated TFs could contribute to the diseases not only because of their

mutations but also due to abnormal regulation of their target genes [29]. Here, our analyses

investigated a broader scope of corneal diseases, because many of these known disease-associ-

ated TFs can influence multiple tissues of the eye. For this analysis, we employed 2 types of data,

DNA-binding profiles of key LSC TFs to predict their target genes and a comprehensive list of

corneal disease genes. For TF DNA-binding profiles, we generated cleavage under targets and

release using nuclease (CUT&RUN) of FOSL2 and ChIP-seq of the p63 protein in LSCs and

additionally incorporated publicly available ChIP-seq data of PAX6, FOXC1, RUNX1, and

SMAD3 in LSCs [30,32]. Except for FOSL2, all other TFs are known to regulate the LSC fate. To

collect genes that are associated with corneal phenotypes, we used 2 approaches. First, we per-

formed a literature search and constructed a list of 161 genes associated with LSCD, inherited

corneal opacification diseases, and ocular as well as systemic syndromes with known corneal

manifestations (S7 Table). In addition to this curated disease gene list, we used disease genes

assembled in the EyeDiseases database [57]. To assess whether TF binding of the key TFs to cor-

neal disease gene loci is more probable than random, we mapped TF binding sites to the nearest

genes in order to detect a statistically significant enrichment of disease genes bound by TFs

(S10A Fig). With this method, we identified that the genes associated to our “curated corneal

disease list” were significantly more likely to be bound by PAX6, FOXC1, RUNX1, and FOSL2

(Figs 5B and S10C). The binding signal of these TFs within the transcription start site (TSS)

regions of the top cornea disease-related genes is summarized by the quantification of binding
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signals (Fig 5C). In parallel, we investigated the TF-disease association by combining TF bind-

ing signals with the distance between the TF binding peaks and the disease genes and employed

a Mann–Whitney U statistical test to identify a potential binding increase (S10B Fig). This gave

rise to similar TF-disease association enrichment results (S10C Fig).

Overall, our analysis highlighted that FOSL2 and several other key LSC TFs binding is

enriched in the TSS regions of cornea disease genes, suggesting that they directly regulate cor-

nea disease genes.

FOSL2 is a direct PAX6 target gene and regulates angiogenesis and tight

junction genes in LSCs

To further assess the function of FOSL2 in LSCs and corneal opacity, we performed siRNA

knockdown of FOSL2 in primary LSCs. Knockdown of FOSL2 was validated using quantitative

polymerase chain reaction (qPCR) and RNA-seq and displayed an efficiency of over 80%, as

Fig 5. Transcription factors regulation of corneal disease-associated genes. (A) FOSL2 and p63 staining of the peripheral cornea. (B) TFs that

bind to gene loci associated with corneal abnormalities with significantly higher occurrence (FDR), as compared to binding to all genes in the

whole genome. FDR was calculated with Fisher exact testing. (C) Dot plot showing the TF binding intensity (color bar) and the number of binding

peaks (npeaks, dot size) near the disease genes that contain a significant number of potential TF binding. The number of peaks is within a 100 kb

region of the TSS; TF binding intensity score is the weighted z score of the quantile log normalized intensities distance weighted. FECD, Fuchs

Endothelial Corneal Dystrophy. For underlying data see S7 Table, GEO GSE206920, GSE236440, and GSE156272. TF, transcription factor; TSS,

transcription start site.

https://doi.org/10.1371/journal.pbio.3002336.g005
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compared to control siCTR (0.12-fold ± 0.068, n = 4) (Figs 6A, S11A and S11B), and gave rise

to 212 differentially expressed genes. Because PAX6 is an undisputed regulator in LSCs and

defects are associated with LSCD and corneal opacity, we also performed PAX6 knockdown

(siPAX6). Intriguingly, FOSL2 expression was significantly down-regulated upon PAX6
knockdown, as compared to siCTR (0.5-fold) (Fig 6A). Furthermore, several high-confidence

PAX6 binding peaks were identified surrounding the FOSL2 locus (Fig 6B), demonstrating

that FOSL2 is a direct target gene of PAX6 in LSCs.

Among the 212 differentially regulated genes detected in siFOSL2 (Fig 6C), 108 were up-

regulated, with significant enrichment of genes involved in “negative regulation of cell popula-

tion proliferation,” “blood vessel morphogenesis,” “angiogenesis,” and “endothelial cell differ-

entiation” (Fig 6D). Furthermore, predicted FOSL2 target genes based on the nearby FOSL2

binding sites were enriched among up-regulated genes by siFOSL2 (Fig 6E). This indicates

that FOSL2 may function primarily as a repressive factor in LSCs. Relevant up-regulated genes

included TGFBI and JAG1 which have known roles in angiogenesis and CLDN1 which is

involved in tight junctions (Fig 6F). Furthermore, FOSL2 binding signals were identified near

these genes (Fig 6G), indicating that these genes are direct targets of FOSL2.

Interestingly, 103 down-regulated genes upon siFOSL2 did not give any enrichment in GO

analysis, suggesting a less prominent role of FOSL2 in gene activation. Nevertheless, CLDN4
and CLDN7, other tight junction genes, are significantly down-regulated (Figs 6C, 6F and

S11G), suggesting an altered barrier function in FOSL2-deficient LSCs. Other down-regulated

genes include TGM1 and ABCA12, linked to epidermal permeability barrier disorders

(S11G Fig).

To summarize, our results demonstrated that, among TFs that define the LSC fate, FOSL2

is a novel LSC TF associated with cornea opacity.

Discussion

The corneal epithelium and the epidermis are both stratified epithelia, serving as barriers and

the first-line defense against external insults. Nevertheless, they have distinct tissue-specific

functions that are tightly controlled by the proliferation and differentiation program of their

corresponding stem cells, LSCs for the cornea and basal KCs for the epidermis. In this study,

we characterized molecular signatures defining the cell fates of these 2 cell types by integrating

in-house multi-omics data as well as publicly available datasets. Using motif and gene regula-

tory network analyses, we identified a collection of shared and cell type-specific epithelial TFs

defining KCs and LSCs. Furthermore, we showed a proof-of-principle that this resource of

LSC TFs and their regulatory mechanisms can provide novel tools for dissecting pathome-

chanisms of corneal diseases.

In contrast to the well-studied TFs and their associated gene regulatory networks in epider-

mal KCs [11–14,58], TFs regulating cornea LSCs have only recently started to emerge. Except

for PAX6, identified TFs including p63, SMAD3, RUNX1, and FOXC1 [30,32,39] which are all

also expressed in KCs [11–14,58]. This raises interesting questions about whether these TFs

are sufficient to determine cell fate differences between LSCs and KCs and how they control

cell fate determination mechanisms. By specifically comparing LSCs to KCs, we identified

PAX6, SMAD3, OTX1, ELF3, and FOSL1 as the LSC-specific TFs that determine the LSC fate.

To note, these LSC-specific TFs may be good candidates for developing (trans)differentiation

strategies to generate LSCs from other cell types for corneal regenerations [59,60]. The identifi-

cation of PAX6 as an LSC-specific TF was expected. It is an eye development master regulator

[30] and is associated with the disease aniridia where corneal opacity is one of the main mani-

festations [33]. Furthermore, PAX6 has previously been shown to co-regulate target genes with
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Fig 6. FOSL2 siRNA knockdown results in deregulation of angiogenesis and tight junction genes. (A) Normalized

transcriptome difference of FOSL2 and PAX6 upon knockdown of FOSL2 (siFOSL2) and PAX6 (siPAX6) (* pval<0.05, **
pval<0.01, *** pval<0.001, paired DESEQ2 differential expression testing). (B) FOSL2 TSS locus with PAX6 binding signal,

ATAC seq, and H3K27ac ChIP-seq in LSCs. (C) Heatmap of differentially expressed genes in siFOSL2, with Zscore plotted.

(D) GO term enrichment of genes up-regulated in siFOSL2 (E) GSEA enrichment analysis based on the expression
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RUNX1 and SMAD3 [32]. Although SMAD3 is also expressed in KCs, it has higher expression in

LSCs, and therefore, it is identified to have a higher influence score LSCs than in KCs in our

study. OTX1 is an important TF for regulating the neural lineage [61,62]. In mice, both Otx1 and

its ortholog Otx2 are vital for tissue specification during eye development, particularly of the reti-

nal pigmented epithelium [63,64]. ELF3 has previously been linked to KRT12 and KRT3 regula-

tion [65] and is one of the TFs identified to play a major role in LSC stratification [39].

FOSL1, along with FOSL2, a novel candidate for corneal disease in our study, and other

TFs from the FOS and JUN families, are known to be important in epidermal cells. These TFs

can form the AP1 complex together with JUN factors [66], which regulates various biological

processes, including epidermal stratification [67]. In our differential motif analysis, the FOS

motif that can be bound by FOS, FOSL1, and FOSL2, is the most abundant motif enriched in

LSCs, as compared to KCs, highlighting the potential role of FOS, FOSL1, and FOSL2 in LSCs.

We found that only a small number of TFs have been identified as KC specific, including

GATA3, CEBPA, and HOX genes. Among these TFs, GATA3 and CEBPA have been reported

to have a role in the epidermis. CEBPA has been shown to regulate p63 expression [68], while

GATA3 is regulated by p63 in the epidermis [69–71]. Interestingly, GATA3 was up-regulated

in aniridia patient LSCs, which is in line with the concept that loss of PAX6 in aniridia LSCs

could lead to a KC-like signature. However, our GSEA analyses did not show significant gene

expression similarity between up-regulated genes in aniridia LSCs and KCs, indicating that

aniridia patient LSCs do not acquire a complete KC fate. Surprisingly, we detected HOXA9 as

one of the KC-specific TFs. HOX genes are well known in antero-posterior body patterning

and segmentation where mesodermal genes and cells are mainly involved [72,73], but little is

known about their function in the epidermis. One plausible interpretation is that, as LSCs are

from the eye and KCs are from the trunk of the body, the detection of HOX9 for the KC fate

simply marks the positional information along antero-posterior axis. Nevertheless, the lower

number of KC-specific TFs, as compared to LSC-specific TFs, indicates that repression of

LSC-specific TF expression is critical for the KC fate. This is in line with our observation that

LSC-specific TFs such as the PAX6 locus is completely covered by H3K27me3, probably via

polycomb repression. It is also worth noting that the ANANSE prediction tool used in this

study is unable to reliably predict TFs with transcriptional repression functions [53], which

limits the identification of TFs to repress LSC genes, if there are any in KCs. Consistent with

this, ANANSE did not detect repressive TFs such as OVOL2 [74] and SOX9 [75] that have

been shown to play roles in LSCs.

We anticipated that TFs that are shared but important to both LSCs and KCs could be not

identified through pairwise gene regulatory network comparison between LSCs and KCs. For

detecting these shared TFs, we compared both cell types to pluripotent stem cells in the gene

regulatory network analysis. This approach indeed resulted in a significant number of shared

epithelial TFs including FOSL2, p63, EHF, TFAP2A, KLF4/5, FOS, JUN, RUNX1, and

FOXC1. Many of these have previously been linked to important functions in both epidermis

and cornea [12–14,16,32,76–80].

foldchange (siFOSL2/siCTR) of genes with nearby FOSL2 binding signal. (F) Expression of JAG1, TGFBI, CLDN1, and

CLDN4 were measured in control LSCs (siCTL) and FOSL2 siRNA-knock down (siFOSL2) samples (n = 4). Values

represent the fold change difference of siFOSL2/siCTR and were normalized to internal housekeepers GAPDH and ACTB

(* pval<0.05, ** pval<0.01, *** pval<0.001, unpaired t test analysis). The data underlying this figure can be found at S10

Table. (G) JAG1, TGFBI, and CLDN1 TSS loci with FOSL2 CUT&RUN signal, ATAC-seq, and H3K27ac ChIP-seq in LSCs.

For the underlying data see S10 Table, GEO GSE242990, GSE236440, and the Zenodo entry [51]. CUT&RUN, cleavage

under targets and release using nuclease; GO, Gene Ontology; GSEA, gene set enrichment analysis; LSC, limbal stem cell;

TSS, transcription start site.

https://doi.org/10.1371/journal.pbio.3002336.g006
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The key role of TFs in cell fate control is often demonstrated by their association with devel-

opmental diseases. PAX6, FOXC1, and p63 are known to be associated with corneal opacity

[20,33,37], and FOSL2 is a novel corneal opacity gene identified in this study. Except for

PAX6, both FOXC1 and FOSL2 are shared between LSCs and KCs. FOSL2, PAX6, and

FOXC1 seem to regulate most identified disease genes. For PAX6 and FOXC1, this is consis-

tent with their broad expression patterns in the eye and the phenotypic heterogeneity and

overlap linked to FOXC1 and PAX6mutations, e.g., iris and corneal defects and higher preva-

lence of glaucoma [33,37], reinforcing a common regulatory network shared by the 2 TFs [81].

As for PAX6- and p63-associated disorders, although PAX6 and TP63mutations are known to

cause corneal opacity, other phenotypes are quite distinct, fully in line with their gene expres-

sion in different tissues, e.g., PAX6 in the cornea epithelium, iris, retina, pancreas, and parts of

the central nervous system, and TP63 in the cornea epithelium, skin epidermis, and other

stratified epithelia [20,33]. Although FOXC1 was annotated as a shared TF of LSCs and KCs in

our study, its relevance for the skin and cornea might still be different. In our analysis, FOXC1

had a higher influence score in LSCs, probably due to its higher expression in LSCs. This is in

line with skin phenotypes not being reported in anterior segment dysgenesis associated with

FOXC1mutations.

In our analysis, we identified 2 TFs that are part of the AP1 complex, FOSL1 and FOSL2.

We identified FOSL2 as a shared epithelial and novel TF associated with corneal opacity,

which was corroborated by in vitro and in vivo protein expression. Furthermore, we identified

FOSL2 as a direct target gene of PAX6, and it was down-regulated in PAX6-deficient cells,

enforcing the role of FOSL2 in corneal pathology. Interestingly, in our analyses to search dis-

ease-associated target genes of key TFs, FOSL2 was predicted to have a potential influence in

other eye diseases, similar to the prediction of PAX6 in our study. Like PAX6 that can influ-

ence multiple tissues of the eye [29], FOSL2 may be a candidate gene for other eye diseases.

This is in line with the reported link between keratoconus and down-regulation of FOSL1

[82], an AP1 complex partner of FOSL2 [83].

In mice, Fosl2 has been linked to extensive dermatosis [83] and abnormalities in the cornea

and anterior segment, but these were mainly overexpression studies [84], while in humans

FOSL2 has been linked to skin, with a recent GWAS study linking SNP-associated with

increased FOSL2 expression to a higher likelihood of eczema [85]. More importantly, FOSL2
truncating variants have recently been linked to a neurodevelopmental syndrome with multi-

ple ectodermal symptoms including scalp aplasia cutis (absence of scalp skin) and tooth and

nail abnormalities [86]. Patients also presented with congenital cataracts, but no corneal phe-

notype was discovered; however, these often manifest at an older age than the patients’ age

reported in the study.

In this study, we have found a predicted-pathogenic heterozygous missense variant in

FOSL2 in a proband with corneal opacity. Upon siRNA-mediated knockdown in LSCs, we

observed that reduced FOSL2 led to an up-regulation of pro-angiogenesis genes like JAG1 and

TGFBI. Furthermore, FOSL2-binding sites were also found in their associated loci, indicating

a role of FOSL2 in repressing angiogenesis. Corneal neovascularization is one of the hallmarks

of LSCD and corneal opacities. FOSL2 has been identified to promote VEGF-independent

angiogenesis in fibroblasts [87], and FOSL2 knock down in glioma endothelial cells increased

blood tumor barrier permeability [88]. The latter study also showed that FOSL2 binds to the

promoters and down-regulates the expression of several tight junction genes TJP1, OCLN, and

CLDN5, increasing barrier permeability. In accordance, we also detected altered expression of

many tight junction and barrier genes in our siFOSL2 LSCs, such as CLDN1, CLDN4, or

TGM1. Tight junctions are essential for the cell–cell contact and permeability barrier function

in epithelial cells, and defects in tight junctions are linked to several epithelial diseases [89,90].
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Therefore, deregulation of tight junction genes and up-regulation of pro-angiogenic genes

upon FOSL2 knockdown strongly support FOSL2 relevance in LSCs identity and the corneal

opacity phenotype, as well as the skin phenotype in reported patients [86]. The role of FOSL2

in the skin epithelial phenotype would require further investigation.

In this study, we identified shared and cell type-specific epithelial TFs that are important in

determining cell fate of LSCs and KCs. Furthermore, we provided evidence for potential TFs

and regulatory mechanisms in corneal diseases by uncovering a novel role for FOSL2 in cor-

neal opacity. We therefore show proof of principle that these key LSC TFs and their gene regu-

latory networks can be leveraged as a resource to unveil pathomechanisms behind corneal

opacity diseases.

Materials and methods

Ethical statement

All procedures for establishing and maintaining human primary keratinocytes were approved

by the ethical committee of the Radboud University Medical Center (“Commissie Mensgebon-

den Onderzoek Arnhem-Nijmegen”) (CMO-nr:2004/132). All donors have given informed

consent in written forms.

All procedures for establishing and maintaining LSCs were conducted according to the

principles expressed in the Declaration of Helsinki. The use of LSCs extracted from corneal

scleral donor rims was approved by the Ethics Committee of the Saarland (Number 226/15

and 110/17). Aniridia patients consented in written form to research limbal biopsy during ocu-

lar surgery.

Permission to use the donor corneas for research purposes was given by the donor’s next of

kin by signing a written consent form released by the Regional Transplant Service and the

National Transplant Service, without ethics committee approvals. According to Article 4 of the

Italian Law 91 of 1st April 1999, donor corneas that cannot be used for transplantation (i.e.,

unsuitable for biological reasons or anamnestic reasons) can be used for research purposes if

the aim is to ameliorate corneal transplantation or progress towards a cure of corneal diseases.

The human corneas used in this study were unsuitable for transplantation and obtained by

Fondazione Banca degli Occhi del Veneto (www.fbov.org; Venice, Italy) for research purposes.

KC and LSC cell culture in vitro

KCs were isolated and cultured as previously described [16]. Briefly, after isolation, primary

KCs were cultured in Keratinocyte Basal Medium supplemented with 100 U/ml Penicillin/

Streptomycin, 0.1 mM ethanolamine, 0.1 mM O-phosphoethanolamine, 0.4% (vol/vol) bovine

pituitary extract, 0.5 μg/ml hydrocortisone, 5 μg/ml insulin, and 10 ng/ml epidermal growth

factor. Medium was refreshed every other day until the cells were 90% confluent.

Limbal tissues were acquired as previously described [91]. Two aniridia limbal tissue single

biopsies were obtained from the superior limbus during penetrating keratoplasty from 2

patients with congenital aniridia as previously described [92]. Genetics of the aniridia patients

were identified to be c.33delC p.Gly12Valfs*19 (NM_000280.2) for AN55 and c.990_993dup p.

Met332Alafs*10 for AN40 (S1 Table). Both patients their corneas were in Lagali AAK-Stage 4

during the Keratoplasty [31].

Cell isolation was performed as previously described [91]. Briefly, limbal tissue was digested

in collagenase A solution (4 mg/ml) in KSFM (Thermo Fisher Scientific; Waltham, Massachu-

setts, United States of America) for 20 h at 37˚C. Cell suspensions were filtered through a use

of Flowmi micro strainer (SP Bel-Art; Wayne, New Jersey, USA). LSC clusters were dissociated

with trypsin-EDTA (0.05%) solution and cultivated in KSFM. Medium was refreshed every
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other day. Subconfluent (80% to 90%) limbal epithelial cells were harvested at passage 3. Aniri-

dia LSCs were harvested at passage 3.

Next to this approach, other LSC samples (LSC-Aberdam, S1 Table) were isolated from

postmortem donated peripheral corneal epithelium and cultured as previously described [50].

Briefly after isolation, they were expanded and cultured in KSFM (Gibco, Life Technologies)

supplemented with 25 μg/ml bovine pituitary extract (BPE; Gibco, Life Technologies), 0.2 ng/

ml epidermal growth factor (EGF, Peprotech, Neuilly-sur-Seine, France), 0.4 mM CaCl2, 2

mM Glutamine (Gibco, Life Technologies), and 100 U/ml Penicillin/Streptomicin (Gibco, Life

Technologies). Medium was refreshed every other day until the cells were 90% confluent.

Finally for CUT&RUN of LSCs, LSCs were isolated and cultured as described previously

[93,94]. Briefly, corneal limbal tissue was dissected from human donor corneas, cut into small

pieces, and incubated with 10 ml trypsin (0.05% trypsin—0.01% EDTA solution, Life Technol-

ogies, 25300–062) for 30 min at 37˚C for 4 consecutive times. Every time, the supernatants

containing the cells were collected, neutralized, centrifuged at 1,000 rpm for 5 min and cells

co-cultured with a feeder layer (consisting of lethally irradiated 3T3-J2 cells) in LSC growth

medium. The LSC growth medium contains 2:1 Dulbecco’s Modified Eagle Medium (Life

Technologies, 21969035) and F12 (Life Technologies, 21765029), 10% Fetal Bovine Serum

(Life Technologies, 10099–141), 50 mg/ml penicillin-streptomycin (Life Technologies,

15140122), 4 mM glutamine (Life Technologies, 25030081), 0.18 mM adenine grade I (Pharma

Waldhof GMBH, 4010-21-2), 0.4 mg/ml hydrocortisone (Flebocortid Richter, Sanofi,

AIC013986029), insulin (Humulin R, Lilly, Canada, HI0210), 2 nM triiodothyronine (Liotir,

IBSA, AIC036906016), and 8.1 mg/ml cholera toxin QD (List Biological Laboratories, 9100B).

Cultures were incubated at 37˚C with 5% CO2. Medium was changed every 2 days with further

addition of 10 ng/ml EGF (Cell Genix GmbH, Germany 1416–050). Cultures were switched to

KSFM and used after 3 passages.

siRNA treatment

Primary human limbal epithelial stem cells were isolated from healthy donors and cultivated

in 6-well plates in KSFM medium (Cat. Nr. 17005042, Thermo Fisher, Gibco, Life Technolo-

gies, Paisley, United Kingdom) supplemented with 500 ng EGF, 12.5 mg BPE (Cat. Nr.

37000015, Thermo Fisher, Gibco, Life Technologies, Paisley, UK) and 0.1% P/S. After reaching

70% to 80% confluence, cells were transfected using Lipofectamin 2000 transfection reagent.

For this purpose, 5 μl Lipofectamin was added to 250 μl Optimem and incubated for 5 min, at

room temperature (RT). In a separate tube, siRNA of interest (information and concentrations

used are summarized in Table 1) was diluted in 250 μl Optimem. The Lipofectamin was added

to the siRNA mixture and incubated for 20 min, RT. After the incubation time, transfection

mixture was added dropwise to the cells. The cells were incubated at 37˚C and 5% CO2 and

medium were changed after 24 h. Cells were collected 48 h after transfection for further

analysis.

Table 1. siRNA oligonucleotide sequences for FOSL2 and PAX6 knockdown.

siRNA siRNA sequence Company

FOSL2 siRNA 100 pmol Sense: CGAACCUCGUCUUCACCUAtt

Antisense: UAGGUGAAGACGAGGUUCGag

Ambion

Ctrl siRNA for FOSL2 100 pmol Catalog No. 4404021 Ambion

PAX6 siRNA 15 pmol combination of 2 different siRNAs: 50CCUGGCUAGCGAAAAGCAAUU

50UGGGCGGAGUUAUGAUACCUU

MWG Eurofins

Ctrl siRNA for PAX6 15 pmol 50AGGUAGUGUAAUCGCCUUGUU MWG Eurofins

https://doi.org/10.1371/journal.pbio.3002336.t001
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Bulk RNA-seq

Total RNA was isolated using the Quick–RNA MicroPrep kit (Zymo Research), according to

the manufacturer’s protocol. RNA concentrations were measured using the the DeNovix DS-

11FX spectrometer, and 500 ng of RNA was prepared for sequencing using the KAPA RNA

HyperPrep Kit with RiboErase (Kapa Biosystems). Libraries were sequenced on the NextSeq

500 (Illumina), generating an average of 15 to 20 million reads per sample.

Single-cell RNA-seq library preparation and sequencing

A single-cell suspension was made using trypsin, after which cells were filtered using a 40 μm

filter to remove cell clumps. Cells were stained with 7-AAD. The live cells were selected for

and FACS-sorted onto 384-well plates containing primers with unique molecular identifiers,

according to the SORT-Seq protocol [95]. Plates were spun down (1,200 × g, 1 min, 4˚C) and

ERCC spike-in mix (1:50,000) was dispensed by a Nanodrop (BioNex) into each well, and 150

nl of the Reverse Transcription (RT) mix was dispensed into each well. Thermal cycling condi-

tions were set at 4˚C 5 min; 25˚C 10 min; 42˚C 1 h; 70˚C 10 min. The library of each plate was

pooled together and the cDNA was purified using AmpureXP (New England BioLabs) beads.

Overnight in vitro transcription (Ambion MEGA-Script) was carried out at 16˚C, with the lid

set at 70˚C. An exonuclease digestion step was performed thereafter for 20 min at 37˚C, fol-

lowed by fragmentation of the RNA samples. After a beads cleanup, the samples were sub-

jected to library RT and amplification to tag the RNA molecules with specific and unique

sample indexes (Illumina), followed by a final beads cleanup (1:0.8, reaction mix: beads) and

the sample cDNA libraries were eluted with DNAse free water. Libraries were quantified using

the KAPPA quantification kit following manufacturer’s protocol after which the plates were

sequenced on the NextSeq 500 (Illumina) for 25 million reads per plate.

ChIP-seq

Chromatin for ChIP was prepared as previously described [96] with minor modifications. On

average, 0.5 M cells were used in each ChIP. Antibodies against H3K27ac (Diagenode

#C15410174, 1.2 μg), H3K4me3 (Diagenode #C15410003, 1 μg), H3K27me3 (Diagenode

#C15410069, 1.5 μg), p63 (Santa Cruz #H129, 1 μg, recognizing the C-terminal α tail of p63)

were used in ChIP assay. Afterwards, 5 ng DNA fragments were pooled and proceeded on

with library construction using KAPA Hyper Prep Kit (Kapa Biosystems #KK8504) according

to the standard protocol. The prepared libraries were then sequenced using the NextSeq 500

(Illumina) according to standard Illumina protocols.

Immunofluorescence stainings

Human donor corneas were fixed with 4% paraformaldehyde overnight at 4˚C, soaked in

increasing gradients of sucrose solutions (7.5%, 15%, and 30% in PBS, at least 30 min each at

4˚C, the last one overnight) and then embedded in OCT compound, frozen, and cut into 5- to

7-mm sections. Sections were permeabilized in a solution containing 0.5% Triton X-100 for 10

min, incubated in 5% BSA (Sigma-Aldrich A7906) for 1 h at RT and then incubated overnight

at 4˚C with primary antibodies. The following primary antibodies (all diluted at 1:100) were

tested: PAX6 (rabbit, Biolegend Poly19013); FOSL1 aka Fra-1 (C-12) (mouse, Santa Cruz Bio-

technology, sc-28310); Anti-FOSL2 (rabbit, Sigma, HPA004817); p63 (mouse, DAKO,

M7317). Sections were extensively washed in 1× PBS and incubated with secondary antibodies

(Alexa Fluor 488 anti-rabbit A11008, Rhodamine Red-X goat anti-mouse IgG R6393, Rhoda-

mine Red-X goat anti-rabbit IgG R6394, Alexa Fluor 488 goat anti-mouse A11001, all from
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Invitrogen, all diluted at 1:500) for 45 min at RT. Sections were eventually mounted with

medium containing DAPI Fluoromont-G (EMS, Società Italiana Chimici, Rome, Italy, 17984–

24) and pictures taken and evaluated through an Eclipse Ti Nikon microscope (Nikon,

Amstelveen, the Netherlands).

LSCs and primary keratinocytes were grown in cell culture chamber slides (Corning, New

York, USA), and, when confluent, fixed using 4% PFA solution. Immunostainings were per-

formed as previously described [97]. Briefly, cells were washed, permeabilized for 15 min with

0.1% Triton X-100, washed again, and blocked for 2 h in 1% FBS. Primary antibody incubation

was done overnight at 4˚C with the following antibodies diluted in blocking buffer: PAX6

(1:300, 901301 Biolegend), P63 (1:100, sc8344 SCBT), FOSL1 (1:100, sc20310, SCBT), and

FOSL2 (1:200, HPA004817 Sigma Aldrich). Cells were washed thoroughly and incubated with

secondary antibodies AlexaFlour 488 (1:400, A11008 Invitrogen) and AlexaFluor 647 (1:400,

A31571 Invitrogen, California, USA). Slides were mounted with Vectashield (VectorLabs, Cal-

ifornia, USA) and analyzed with Zeiss AI Sample Finder (Zeiss, Jena, Germany). Fiji/ImageJ

software (National Institutes of Health, Maryland, USA) was used for overlay images

preparation.

CUT&RUN

CUT&RUN was performed using the CUT&RUN Assay Kit (Cell Signaling Technology

#86652) and according to the manufacturer instructions. Briefly, 200,000 live primary LSCs

were used per immunoprecipitation (IP). For FOSL2 IPs, 10 ml of antibody (D2F1E, Rabbit

mAb #19967) was used per IPs, 2 IPs were performed per replica to ensure a sufficient amount

of DNA. The negative control IgG included in the kit was used to check for enrichment by

quantitative PCR.

For high-throughput sequencing, libraries were prepared using KAPA HyperPrep Kit

(Kapa Biosystems #KK8504) using 5 ng of DNA. Libraries concentration and fragment reparti-

tion were checked by automated electrophoresis (Bioanalyzer Instrument, Agilent). Libraries

were sequenced using the NextSeq 500 (Illumina) and according to their protocol.

Reverse transcription quantitative PCR (RT-qPCR) validation

Approximately 250 ng RNA were used for cDNA synthesis using the iScript cDNA synthesis

kit (BioRad, California, USA). Quantitative PCR (qPCR) was carried out using 4 μl cDNA

(diluted 1:20) with iQ SYBR Green Supermix (BioRad, California, USA) and specific primers

(Biolegio, Nijmegen, NL):

GAPDH Forward (Fw): AAG GAG TAA GAC CCC TGG ACC A

GAPDH Reverse (Rv): GCA ACT GTG AGG AGG GGA GATT

ACTB Fw: TTC TAC AAT GAG CTG CGT G

ACTB Rv: GGG GTG TTG AAG GTC TCA AA

JAG1 Fw: GAT CGC CTG CTC AAA GGT CT

JAG1 Rv: GAC TGG AAG ACC GAC ACT CG

TGFBI Fw: CCT TTG AGA CCC TTC GGG CTG

TGFBI Rv: TCG AAG GCC TCA TTG GTC GG

CLDN1 Fw: CCC CAG TCA ATG CCA GGT ACG

CLDN1 Rv: TCG GGG ACA GGA ACA GCA AA

OCLN Fw: TCT AGG ACG CAG CAG ATT GGT

OCLN Rv: TCA GGC CTG TAA GGA GGT GG
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All disease gene qPCRs were performed using a BioRad CFX96 system following standard

cycling conditions. Data were analyzed by the ΔΔCT method, normalized to housekeepers

GAPDH and ACTB.

FOSL2 and PAX6 siRNA RT-qPCR

RNA extraction were performed using RNA isolation kit (RNA Purification Plus Micro Kit,

Cat. Nr. 47700, (Norgen Biotek CORP. Canada)) according to the manufacturer’s instructions.

Optional DNA column digestion was performed. The eluted RNA samples were stored at

−80˚C until further use. NEB One Taq RT-PCR kit (One Taq RT-PCR Kit, New England Bio-

labs, Frankfurt, Germany) was used for cDNA synthesis, following the manufacturer’s instruc-

tions. Samples were stored at −20˚C. The qPCR mix contained 1 μl of the specific primer

solution, 5 μl SYBR Green Mix (Qiagen N.V., Venlo, the Netherlands), and 3 μl nuclease-free

water (total volume: 9 μl). To investigate the mRNA expression levels, 1 μl cDNA of interest

was added to the qPCR mix. The “QuantStudio 5 real-time PCR system” (Thermo Fisher Sci-

entific, Waltham, Massachusetts, USA) was used for the qPCR reactions. The amplification

conditions were 95˚C for 10 s, 60˚C for 30 s, and 95˚C for 15 s (40 cycles). Samples were mea-

sured in duplicates and experiments were repeated for at least 5 donors. Values were normal-

ized to the expression value of TATA-Box binding protein as an endogenous control gene

using the ΔΔCT method and the fold change (2ΔΔCT-value) was used for statistical analysis.

All primers were purchased from Quantitect Primer assay (Qiagen N.V., Venlo, the Nether-

lands; PAX6: QT00071169, FOSL2: QT01000881, and TBP: QT00000721).

RNA-seq, ATAC-seq ChIP-seq, and CUT&RUN data preprocessing

Preprocessing of reads was done automatically with workflow tool seq2science v0.7.1 [98].

Paired-end reads were trimmed with fastp v0.20.1 [99] with default options. Genome assembly

GRCh38.p13 was downloaded with genomepy 0.11.1 [100]. Public samples were downloaded

from the Sequence Read Archive [101] with help of the NCBI e-utilities and pysradb [102].

The effective genome size was estimated per sample by khmer v2.0 [103] by calculating the

number of unique kmers with k being the average read length per sample. scATAC fastq files

were merged to pseudobulk by combining all fastq files from each plate using the bash com-

mand cat.

Reads of ChIP-seq, CUT&RUN, and ATACseq were aligned with bwa-mem v0.7.17 [104]

with options ’-M’.

Reads of RNAseq samples were aligned with [105] with default options. Afterwards, dupli-

cate reads were marked with Picard MarkDuplicates v2.23.8 [106]. General alignment statistics

were collected by samtools stats v1.14 [107]. Mapped reads were removed if they did not have

a minimum mapping quality of 30, were a (secondary) multimapper or aligned inside the

ENCODE blacklist [108]. RNAseq sample counting and summarizing to gene level was per-

formed on filtered bam using [109]. Sample sequencing strandness was inferred using [110] in

order to improve quantification accuracy.

ATAC samples were tn5 bias shifted by seq2science. ChIP, CUT&RUN, and ATAC sample

peaks were called with macs2 v2.2.7 [111] with options ’—shift -100—extsize 200—nomodel—

keep-dup 1—buffer-size 10000’ in BAM mode. The effective genome size was estimated by tak-

ing the number of unique kmers in the assembly of the same length as the average read length

for each sample. Narrowpeak files of ChiP-seq and CUT&RUN biological replicates belonging

to the same condition were merged with the irreproducible discovery rate v2.0.4.2 [112].

ATAC-seq samples were correlated seq2science its DESeq2 reads per peak spearman correla-

tion clustering (S5F Fig).
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Single-cell RNA-seq data preprocessing

Single-cell libraries were preprocessed using the cellseq2 pipeline. Briefly, reads were aligned

using star to the GRCh38.p13 genome. After which cells were quality controlled using Seurat,

filtering cells on ERCC reads, genes measured and transcripts per cell. After visualization of

the lack of heterogeneity by Umap, pseudobulk count data was generated by summing all the

cells their UMI counts. Cellular heterogeneity was assessed using the analysis file Genera-

te_scRNAseq_pseudobulk.Rmd. Finally, single-cell and bulk gene count tables were merged

for a combined bulk and pseudobulk analysis.

RNA-seq data analysis and normalization

The bulk and pseudobulk count tables were merged on gene names, keeping all gene names

detected. Due to potential sex differences between donors, genes located on chromosome X

and Y were removed. Finally, genes with less than 10 counts per row were removed. Variance

visualization was performed using sample distance and PCA. For quality control, sample vari-

ance and distance were visualized before and after removing technical variance due to different

sequencing methods. Limma [113] was used to remove these batch effects.

Rld normalization was used for normalizing gene intensities. Between all conditions differ-

entially expressed genes were detected using Deseq2 [114]. Non-batch corrected count tables

were used for identifying the differentially regulated genes. Ashr log2 fold change shrinkage

[115] was used to shrink the Log2 fold change values. Differentially regulated gene detection

cutoffs were set as an adjusted p-value of 0.01 or lower, and an absolute log2 FC of 0.58 and

larger.

The packages complex Heatmaps [116] and circlize [117] were used to visualize the differ-

entially expressed genes. Subsequently, Progeny enrichment [47] was performed to quantify

signaling pathway target gene enrichment. Clusterprofiler [44] was run for GO term enrich-

ment on differentially expressed genes of each comparison. Finally, foldchange of all genes

were used to generate a gene list for GSEA enrichment of the MSigDB collections [46]. Gene

names were mapped to ENTREZID using AnnotationDbi [118] and these were used to run

KEGG pathway enrichment. The enriched pathways were visualized using pathview [119].

Identification of CREs

In order to identify CREs, ATAC-seq was used. Bulk and scATAC data were merged from in

vitro expanded KCs and LSCs. Next to the generated datasets, publicly available data were

incorporated. To prevent a sequencing depth bias, the top 100.000 ATAC peaks from each cell

type were combined, the overlapping peak summits were merged, and histone modifications

in varying window sizes around these ATAC peaks were quantified using histone ChIP-seq

datasets (Fig 2A). For ATAC signal quantification, the ATAC intensity was quantified in 200

bp around the peak summits, and for the promoter mark H3K4me3 and the enhancer mark

H3K27ac, a 2kb window was used and finally for the repressive H3K27me3 mark, a 5 kb win-

dow was used for quantification (Fig 2A). This resulted in an extensive dataset containing

CREs and their respective histone modification signal intensity.

Differential CREs were identified for the ATAC-seq and H3K27ac reads by running

DESEQ2 on the read counts within the defined windows and identified regions (adjusted p-

value <0.05). For H3K4me3 and H3K27me3 signals, differential CREs were identified with 2

steps. First, the histone mark distribution was plotted, and CREs with a low to no histone sig-

nal were disregarded. Next, high activity regions with variable signal were selected (S5 Fig).

Variable CREs were linked to genes with 2 approaches:

PLOS BIOLOGY Cell fate regulation of limbal stem cells and epidermal keratinocytes

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002336 October 19, 2023 23 / 36

https://doi.org/10.1371/journal.pbio.3002336


1. CREs were linked to all the TSS regions within a 100 kb window using bedtool window

[120] after which the CREs per TF were distance weighted and summed based on the ANA-

NSE distance weighing approach including promoter peaks [53].

2. CREs were linked to the closest TSS region within 20 kb using bedtool closest [120].

After linking the regions to genes in both approaches, intensity scores were printed to a

CSV file. Heatmaps and GO term enrichments were generated in R using clusterprofiler and

complex heatmap.

Single-cell ATAC-seq

A single-cell suspension was made using trypsin. After which cells were filtered using a 40 μm

filter to remove cell clumps. The protocol on from Chen and colleagues [121] was used to

sequence single-cell ATAC. Briefly, 50.000 cells were tagmented in bulk in 45 μl of tagmenta-

tion mix (20 mM Tris (pH 7.6), 10 mM magnesium chloride 20% Dimethylformamide), 5 μl

of tagmentation protein and 0.25 μl of Digitonin. Cells were tagmented for 30 min at 37˚C and

800 rpm. Tagmentation was stopped by adding 50 μl of tagmentation stop buffer (10 mM Tris-

HCL (pH 7.8) and 20 mM EDTA). Cells were stained with DAPI and DAPI positive cells were

FACs sorted in 384-well plates containing Nextera primers with unique molecular identifiers,

NACL ProteinaseK and SDS page. Plates were spun down (1200 × g, 1 min, 4˚C) and were

incubated for 15 min at 65˚C; 4 μl of Tween20 was added, and 2 μl of H20 was added, and

finally 10 μl of NEBNext High-Fidelity 2X PCR Master Mix was added to each well. Thermal

cycling conditions were set at 72˚C for 5 min, 98˚C for 5 min, and then, 20 repeats of 98˚C for

10 s, 63˚C for 30 s, and 72˚C for 20 s.

Plate libraries were pooled and purified using a Qiagen PCR purification kit with adjusted

buffer volumes according to Chen and colleagues [121]. After the column cleanup, a final

beads cleanup was performed using AmpureXP (New England BioLabs) beads and the sample

cDNA libraries were eluted with DNAse free water. Libraries were quantified using the

KAPPA quantification kit following manufacturer’s protocol after which the plates were

sequenced on the NextSeq 500 (Illumina) for 30 million reads per plate.

Motif analysis

The Gimme motifs database was pre-filtered [52] to include only motifs linked to TFs which

were expressed in either KC and/or LSCs (using a cutoff of at least 10 counts in total). When

multiple motifs mapped to a TF, the most variable motif was used. In case multiple TFs

mapped to a motif, the most differential TF on the transcriptome was annotated to the motif.

All highly variable CREs their log10 quantile normalized values were used as an input for

Gimme maelstrom motif enrichment analysis.

ANANSE analysis

For the gene regulatory network analysis, all the called ATAC peaks were used, merging sum-

mits and excluding peaks on the chromosomes GL, Un, KI, MT, X, and Y due to potential

donor sex differences. Next, ANANSE binding was ran using all the peaks as potential

enhancer regions and using both ATAC and H3K27ac signals to predict potential TF binding.

To select the TF binding model, a Jaccard similarity score of min 0.2 was used, to minimalize

the false-positive models used to predict TF binding. For ANANSE network, the ANANSE

binding files were combined with the RNAseq TPM files. This included all bulk RNAseq sam-

ples of KCs, LSCs, and ESCs (S1 Table). In the case of the in vivo pseudobulk data, FPKM val-

ues were used based on the UMI tables.
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Finally, ANANSE influence was ran using the top 500.000 differential edges between net-

works. Deseq2 was ran on the countfiles of each comparison to identify differential genes

needed for ANANSE influence. To prevent missing values, for the final ESC-KC, ESC-LSC,

KC-LSC, and LSC-KC comparison, all differential edges were taken from each comparison

and used to reran each comparison with all these edges included. This prevented missing val-

ues in the differential networks while comparing different differential networks.

TF hierarchy was estimated using the TF-target TF binding score generated by the influence

command running the–full-output flag. This represents the motif, ATAC&H3K27ac signal

intensity in the target TF locus and is excluding the difference in expression. The Delta binding

score was calculated by subtracting the score of a TF-gene interaction within 1 GRN with the

score of the interaction within the other GRN.

The delta binding score of the ESC-KC and ESC-LSC comparisons were averaged. If this

average was higher than the delta binding score of KC-LSC and LSC-KC, the interaction was

classified as “shared epithelial,” if the delta binding score was highest in LSC-KC, it was classi-

fied as “KC specific,” if the delta binding score was highest in KC-LSC, it was classified as “LSC

specific.”

Single-cell RNA-seq analysis of the epidermis and the cornea

The raw sequencing data was downloaded from GEO and split it into fastq files using

seq2science. Cellranger count was run with Cellranger 6.0.1 to retrieve the matrix, barcodes,

and features files necessary for Seurat [122] analysis in R. scRNA-seq cells were selected with a

minimum count of 2,000, a feature number above 1,000, and a mitochondrial percentage

below 30 percent. Cell cycle scoring was performed using Seurat CellCycleScoring() feature

with the cell cycle genes from Tirosh and colleagues [123]. All cells not in the G1 phase were

removed. Leiden Clustering was performed and cell clusters were annotated based on

described marker genes.

For the data of the epidermis, cell clusters were selected with high KRT14, KRT5, and low

KRT1 and KRT10 expression as basal KCs. From the cornea dataset, cell clusters with high

S100A2 with PAX6 and TP63 expression and without CPVL expression were selected as LSCs.

The in vivo versus in vitro fold change difference plot was generated by loading deseq2 result

tables to identify the TF fold changes.

ChIP-seq and CUT&RUN data analysis

ChIP-seq and CUT&RUN peaks were called with MACs2 and validated by IDR (preprocess-

ing). Next for each peak summit reads were counted in 200 bp windows across each summit.

Values were log-transformed and quantile-based normalized. Peaks were linked to TSS regions

in 100 kb, using bedtools window. Afterwards, they were distance weighted using the ANA-

NSE distance weighing approach. When genes did not have ChIP-seq peaks within a 100 kb

window, they got an intensity score of 0.

Disease gene lists were collected from the EyeDiseases database [57], including all disease

gene lists of more than 20 genes. A one-sided Mann–Whitney U test was performed to test the

hypothesis that the disease genes have more TF binding than the other genes in the genome.

Of each significant hit, the top 5 of most bound gene loci were outputted to a list. And the final

list was used to generate a dotplot in R (hipseq_intensity_npeak_dotplot.Rmd). Alternatively,

ChIP-seq/CUT&RUN peaks were mapped to the gene TSS start site using bedtool closest.

Next, disease genes mapped versus non-mapped disease genes were compared to all genes

mapped versus non-mapped. Using a Fisher exact test.
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Cornea disease gene list

Curated cornea disease list was firstly compiled by retrieving all known genetic disorders

affecting the cornea and respective affected genes from “Ophthalmic Genetic Diseases” [124]

and then confirmed using available literature in Pubmed (https://pubmed.ncbi.nlm.nih.gov/)

and online eye disease (https://gene.vision/) databases. Diseases were grouped as (1) corneal

diseases; (2) systemic (or other ocular) disorders with corneal phenotypes; and (3) diseases

with secondary cornea involvement (due to exposure or unclear involvement). Genes associ-

ated with multifactorial disease keratoconus were added based on literature search mainly of

published genome-wide association (GWAS) and linkage (GWLS) studies [124–126]. Curated

gene list is available as S7 Table.

Variant discovery

Participants of the 100,000 Genomes Project were identified for our analyses who had at least

one of the following HPO terms or daughter terms present: corneal opacity (HP:0007957), cor-

neal scarring (HP:0000559), Opacification of the corneal stroma (HP:0007759), central opacifi-

cation of the cornea (HP:0011493), band keratopathy (HP:0000585), central posterior corneal

opacity (HP:0008511), corneal crystals (HP:0000531), generalized opacification of the cornea

(HP:0011494), peripheral opacification of the cornea (HP:0008011), punctate opacification of

the cornea (HP:0007856), and sclerocornea (HP:0000647). A total of 33 probands were identi-

fied who remain genetically unsolved. The whole genome sequence data was interrogated for

single-nucleotide variants (SNVs) and indels (insertions or deletions), copy number variants

(CNVs), and structural variants as previously described [127]. Filtered variants were annotated

using Ensembl Variant Effect Predictor (VEP v99) and prioritized identified variants using

scores available from CADD, MutationTaster, Provean, Sift, polyphen2, MetaRNN, DANN,

fathmm-MKL. Variant nomenclature was assessed using Variant Validator.

Supporting information

S1 Fig. Additional quality control RNA-seq analysis of LSCs and KCs. (A) PCA plot of

RNA-seq samples before batch correction. (B) PCA plot after batch correction. (C) Pearson

correlation matrix before batch correction. (D) Pearson correlation matrix after batch correc-

tion. (E) Umap dimensionality reduction of scRNA-seq data, visualizing the samples each cell

is from on the left, and the cell cycle state on the right. (F) Gene count plot for PAX6, KRT1,

KRT19, and TP63 in all KC and LSC samples. (G) TPM gene plots for KRT1, KRT10, in KC

and various stratified KC samples ranging from day 2 (KC_strat_1), day 4 (KC_strat_2) and

day 7 (KC_strat_3) of stratification, and of KRT12 and KRT3 in LSC and airlifted stratified

cornea epithelial cells (CECs). For the underlying data, see S4 Table, GEO GSE206922,

GSE206923, and GSE242995.

(PNG)

S2 Fig. KEGG pathway expression visualizations LSCs and KCs. (A) TNF signaling pathway

component expression FC differences between KC and LSCs. (B) NF-KAPPA B signaling

pathway component expression FC differences between KC and LSCs. For the underlying

data, see S4 Table, GEO GSE206922, GSE206923, and GSE242995.

(PNG)

S3 Fig. RNA-seq analysis of LSCs and Aniridia LSCs. (A) Heatmap of normalized DEG

expression between control and aniridia patient LSCs (adjusted pval< 0.05), using k-means

clustering with 2 clusters. (B) PCA plot of RNA-seq samples before batch correction. (C) PCA

plot after batch correction. For the underlying data, see S4 Table, GEO GSE206922,
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GSE206923, and GSE242995.

(PNG)

S4 Fig. Additional vizualizations regulatory element (CRE) analysis. (A) Overview of data

types used in our analysis. (B) Variable CREs mapped to the closest TSS within 50 kb. Zscore

normalized CRE signal intensities and normalized RNA-seq intensities. (C) Heatmap of

PROGENy TNF and NF-KB target genes and the Z-score of the quantile normalized histone

intensity signal of the closest CRE and the distance weighted enhancer signal. (D) TNF and

HOXA9 TSS loci with signals of RNA-seq, ATAC-seq, ChIP-seq of H3K27ac, H3K4me3, and

H3K27me3 in KCs and LSCs. For the underlying data, see S5 Table, GEO GSE206918,

GSE206920, and the trackhub in the Zenodo entry [51].

(PNG)

S5 Fig. Additional quality control regulatory element (CRE) analysis. (A) Quantile normal-

ized intensity score of all ATAC peaks for the varying histone datasets. Including cutoff value

for H3K4me3 and H3K27me3. (B) Resulting intensity score for H3K4me3 and H3k27me3

regions. (C) Deseq2 volcano plot of all ATAC & H3K27ac regions. Variance with the variance

cutoff for H3K4me3 and H3K27me3. (D) Resulting population of variable regions. (E) Pie

chart of region type distribution. For the underlying data, see GEO GSE206918 and

GSE206920.

(PNG)

S6 Fig. TFs Motifs and hierarchy vizualization. (A) Enriched motifs linked to the various

TFs. (B) General epithelial interactions between TFs. Edge Width corresponds with ANANSE

binding score predictions. Node color represents RNAseq fold change between LSC and KCs,

while node size represents outdegree. (C) Similar to B but with all the LSC-specific interac-

tions. (D) Similar to B but with all the KC-specific interactions. For underlying data, see the

Zenodo entry [51].

(PNG)

S7 Fig. Extra labeled influence plot and outdegree analysis. (A) ANANSE influence of ESC

to KC (x-axis) and ESC to LSC (y-axis), circle size represents a maximum number of target

genes in both comparisons. The circle color represents log2FC between LSC/KC. (B) ESC-LSC

top TF interaction network generated by ANANSE. (C) ESC-KC top TF interaction network

generated by ANANSE. For the underlying data, see the Zenodo entry [51].

(PNG)

S8 Fig. Additional quality control in vivo single-cell RNA-seq. (A) Umap of epidermal

scRNAseq dataset of Atwood and colleagues. Basal KC cluster used for validation is

highlighted. (B) Umap of scCornea atlas of Collin and colleagues, basal LSC cluster used for

validation is highlighted. (C) Marker gene expression used to select the basal KCs cluster. (D)

Marker gene expression used to select the basal LSC cluster. (E) GO term enrichment of the

basal-KC high DEGS enriched vs. the human genome as a background and simplified using

simplify. (F) GO term enrichment of the basal-LSCs high DEGS enriched versus the human

genome as a background and simplified using simplify. For the underlying data, see GEO

GSE155683 and GSE147482 [55,56].

(PNG)

S9 Fig. FOSL2 variant and protein stainings. (A) Overview of the FOSL2 transcript and pro-

tein, with the location of the variant of unknown significance. (B) FOSL2 and TP63 staining of

the central cornea. (C) FOSL1 and FOSL2 staining of the peripheral cornea (D) FOSL1 and

FOSL2 staining of the central cornea. (E) FOSL2 and PAX6 staining of the peripheral cornea.
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(F) FOSL1 and FOSL2 staining of the central cornea. (G–J) Immunocytochemistry analysis of

fixed LSCs and KCs of transcription factors p63 (E), PAX6 (F), FOSL2 (G), and FOSL1 (H).

Predicted general TFs p63, FOSL1, and FOSL2 are detected in the nuclei of both cell types

while PAX6 is only detected in LSCs. Note that some non-nuclear signal is found in KCs

stained with PAX6 but that is considered autofluorescence. DAPI staining (blue) depicts cell

nuclei. Scale bar, 100 μm.

(PNG)

S10 Fig. TF binding disease genes enrichment overview. (A) Approach for distance weighing

and merging of TF ChIP-seqs per TF. This resulted in a TF-disease gene score distribution

that was compared to the distribution of all genes with a one-sided Mann–Whitney U test. (B)

Approach for linking the ChIP-seq peaks to the closest gene TSS, after which enrichment for

disease genes was tested with a Fisher exact test. (C) FDR values of the significant enriched TFs

resulting from the ChIP-seq Mann–Whitney U tests and the Fisher exact test. Significant for

FDR< 0.1. For the underlying data, see S7 Table, GEO GSE206920, GSE236440, and

GSE156272.

(PNG)

S11 Fig. Additional quality control siRNA treatment and RNA sequencing. (A) qPCR vali-

dation FOSL2 knockdown the data underlying this figure can be found at S10 Table. (B) qPCR

validation PAX6 knockdown the data underlying this figure can be found at S10 Table. (C)

Pearson correlation matrix siCTR and siPAX6 samples. (D) Pearson correlation matrix siCTR

and siFOSL2 samples. (E) PCA plot of RNAseq siPAX6 samples. (F) PCA plot of RNA-seq

siFOSL2 samples. (G) Transcripts CLDN7, OCLN, TGM1, and ABCA12 were measured in

control LSCs (CTRL) and FOSL2 siRNA-knock down (FOSL2 KD) samples (n = 4). Values

represent fold change difference of FOSL2 KD to their respective CTRL and were normalized

to internal housekeepers GAPDH and ACTB (* pval<0.05, ** pval<0.01, *** pval<0.001,

unpaired t-test analysis). For the underlying data, see S10 Table, GEO GSE242990, and

GSE236440.

(PNG)

S1 Table. RNA-seq dataset overview. Overview of all RNA-seq datasets generated and used,

including datatype, origin, medium condition, and GEO accession number.

(DOCX)

S2 Table. ATAC-seq dataset overview. Overview of all ATAC-seq datasets generated and

used, including datatype, origin, medium condition, and GEO accession number.

(DOCX)

S3 Table. TF binding datasets ChIP-seq and CUT&RUN overview. Overview of all TF bind-

ing datasets generated and used, including datatype, origin, medium condition, and GEO

accession number.

(DOCX)

S4 Table. Enrichment data in vitro KC vs. LSC comparisons table. Overview of all in vitro

bulk RNA-seq GO term enrichments, GSEA enrichments, and Progeny enrichment scores.

(XLSX)

S5 Table. Enrichment data CREs in vitro KC vs. LSC comparisons. Overview of all in CRE

GO term enrichments and GSEA enrichment scores.

(XLSX)
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S6 Table. Enrichment data in vivo KC vs. LSC comparisons table. Overview of all in vivo

pseudo bulk RNA-seq GO term enrichments, GSEA enrichments, and Progeny enrichment

scores.

(XLSX)

S7 Table. Curated disease gene list. Overview of all disease genes identified, including Pheno-

type MIM number, clinical description, and gene OMIM number.

(XLSX)

S8 Table. HP terms included and excluded. Overview of all the HP terms included and

excluded, and the number of GEL probands.

(DOCX)

S9 Table. Variant pathogenicity predictions. Overview of the FOSL2 variant info and the

pathogenic prediction scores.

(DOCX)

S10 Table. QPCR measurements. Overview of the qPCR measurements. qPCR data—ratio/

fold change compared to each respective LSCs donor.

(XLSX)
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37. Tümer Z, Bach-Holm D. Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations.

Eur J Hum Genet. 2009 Dec; 17(12):1527–39. https://doi.org/10.1038/ejhg.2009.93 PMID: 19513095

38. Seo S, Singh HP, Lacal PM, Sasman A, Fatima A, Liu T, et al. Forkhead box transcription factor

FoxC1 preserves corneal transparency by regulating vascular growth. Proc Natl Acad Sci U S A. 2012

Feb 7; 109(6):2015–20. https://doi.org/10.1073/pnas.1109540109 PMID: 22171010

39. Li M, Zhu L, Liu J, Huang H, Guo H, Wang L, et al. Loss of FOXC1 contributes to the corneal epithelial

fate switch and pathogenesis. Signal Transduct Target Ther. 2021 Jan 8; 6(1):1–11.

40. Kitazawa K, Hikichi T, Nakamura T, Sotozono C, Kinoshita S, Masui S. PAX6 regulates human corneal

epithelium cell identity. Exp Eye Res. 2017 Jan 1; 154:30–8. https://doi.org/10.1016/j.exer.2016.11.

005 PMID: 27818314

41. van den Bogaard EH, Rodijk-Olthuis D, Jansen PAM, van Vlijmen-Willems IMJJ, van Erp PE, Joosten

I, et al. Rho kinase inhibitor Y-27632 prolongs the life span of adult human keratinocytes, enhances

skin equivalent development, and facilitates lentiviral transduction. Tissue Eng Part A. 2012 Sep; 18

(17–18):1827–36. https://doi.org/10.1089/ten.TEA.2011.0616 PMID: 22519508
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