86 research outputs found

    Clinical proteomics for precision medicine: the bladder cancer case

    Get PDF
    Precision medicine can improve patient management by guiding therapeutic decision based on molecular characteristics. The concept has been extensively addressed through the application of –omics based approaches. Proteomics attract high interest, as proteins reflect a “real-time” dynamic molecular phenotype. Focusing on proteomics applications for personalized medicine, a literature search was conducted to cover: a) disease prevention, b) monitoring/ prediction of treatment response, c) stratification to guide intervention and d) identification of drug targets. The review indicates the potential of proteomics for personalized medicine by also highlighting multiple challenges to be addressed prior to actual implementation. In oncology, particularly bladder cancer, application of precision medicine appears especially promising. The high heterogeneity and recurrence rates together with the limited treatment options, suggests that earlier and more efficient intervention, continuous monitoring and the development of alternative therapies could be accomplished by applying proteomics-guided personalized approaches. This notion is backed by studies presenting biomarkers that are of value in patient stratification and prognosis, and by recent studies demonstrating the identification of promising therapeutic targets. Herein, we aim to present an approach whereby combining the knowledge on biomarkers and therapeutic targets in bladder cancer could serve as basis towards proteomics- guided personalized patient management

    Urinary CE-MS peptide marker pattern for detection of solid tumors

    Get PDF
    Urinary profiling datasets, previously acquired by capillary electrophoresis coupled to mass-spectrometry were investigated to identify a general urinary marker pattern for detection of solid tumors by targeting common systemic events associated with tumor-related inflammation. A total of 2,055 urinary profiles were analyzed, derived from a) a cancer group of patients (n = 969) with bladder, prostate, and pancreatic cancers, renal cell carcinoma, and cholangiocarcinoma and b) a control group of patients with benign diseases (n = 556), inflammatory diseases (n = 199) and healthy individuals (n = 331). Statistical analysis was conducted in a discovery set of 676 cancer cases and 744 controls. 193 peptides differing at statistically significant levels between cases and controls were selected and combined to a multi-dimensional marker pattern using support vector machine algorithms. Independent validation in a set of 635 patients (293 cancer cases and 342 controls) showed an AUC of 0.82. Inclusion of age as independent variable, significantly increased the AUC value to 0.85. Among the identified peptides were mucins, fibrinogen and collagen fragments. Further studies are planned to assess the pattern value to monitor patients for tumor recurrence. In this proof-of-concept study, a general tumor marker pattern was developed to detect cancer based on shared biomarkers, likely indicative of cancer-related features

    Urinary proteomics can define distinct diagnostic inflammatory arthritis subgroups

    Get PDF
    Current diagnostic tests applied to inflammatory arthritis lack the necessary specificity to appropriately categorise patients. There is a need for novel approaches to classify patients with these conditions. Herein we explored whether urinary proteomic biomarkers specific for different forms of arthritis (rheumatoid arthritis (RA), psoriatic arthritis (PsA), osteoarthritis (OA)) or chronic inflammatory conditions (inflammatory bowel disease (IBD)) can be identified. Fifty subjects per group with RA, PsA, OA or IBD and 50 healthy controls were included in the study. Two-thirds of these populations were randomly selected to serve as a training set, while the remaining one-third was reserved for validation. Sequential comparison of one group to the other four enabled identification of multiple urinary peptides significantly associated with discrete pathological conditions. Classifiers for the five groups were developed and subsequently tested blind in the validation test set. Upon unblinding, the classifiers demonstrated excellent performance, with an area under the curve between 0.90 and 0.97 per group. Identification of the peptide markers pointed to dysregulation of collagen synthesis and inflammation, but also novel inflammatory markers. We conclude that urinary peptide signatures can reliably differentiate between chronic arthropathies and inflammatory conditions with discrete pathogenesis

    Omics derived biomarkers and novel drug targets for improved intervention in advanced prostate cancer

    Get PDF
    Prostate cancer (PCa) is one of the most frequently diagnosed malignancies, and the fifth leading cause of cancer related mortality in men. For advanced PCa, radical prostatectomy, radiotherapy, and/or long-term androgen deprivation therapy are the recommended treatment options. However, subsequent progression to metastatic disease after initial therapy results in low 5-year survival rates (29%). Omics technologies enable the acquisition of high-resolution large datasets that can provide insights into molecular mechanisms underlying PCa pathology. For the purpose of this article, a systematic literature search was conducted through the Web of Science Database to critically evaluate recent omics-driven studies that were performed towards: (a) Biomarker development and (b) characterization of novel molecular-based therapeutic targets. The results indicate that multiple omics-based biomarkers with prognostic and predictive value have been validated in the context of PCa, with several of those being also available for commercial use. At the same time, omics-driven potential drug targets have been investigated in pre-clinical settings and even in clinical trials, holding the promise for improved clinical management of advanced PCa, as part of personalized medicine pipelines

    One More Bottleneck towards Biomarker Validation and Clinical Implementation

    Get PDF
    ELISA is the main approach for the sensitive quantification of protein biomarkers in body fluids and is currently employed in clinical laboratories for the measurement of clinical markers. As such, it also constitutes the main methodological approach for biomarker validation and further qualification. For the latter, specific assay performance requirements have to be met, as described in respective guidelines of regulatory agencies. Even though many clinical ELISA assays in serum are regularly used, ELISA clinical applications in urine are significantly less. The scope of our study was to evaluate ELISA assay analytical performance in urine for a series of potential biomarkers for bladder cancer, as a first step towards their large scale clinical validation. Seven biomarkers (Secreted protein acidic and rich in cysteine, Survivin, Slit homolog 2 protein, NRC-Interacting Factor 1, Histone 2B, Proteinase-3 and Profilin-1) previously described in the literature as having differential expression in bladder cancer were included in the study. A total of 11 commercially available ELISA tests for these markers were tested by standard curve analysis, assay reproducibility, linearity and spiking experiments. The results show disappointing performance with coefficients of variation>20% for the vast majority of the tests performed. Only 3 assays (for Secreted protein acidic and rich in cysteine, Survivin and Slit homolog 2 protein) passed the accuracy thresholds and were found suitable for further application in marker quantification. These results collectively reflect the difficulties in developing urine-based ELISA assays of sufficient analytical performance for clinical application, presumably attributed to the urine matrix itself and/or presence of markers in various isoforms

    Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of -omics findings

    Get PDF
    Characterization of disease-associated proteins improves our understanding of disease pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to address these issues, we investigated the value of parallel analysis of compartment-specific proteomes with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) agreement. The validity of the individual datasets and of a “verified” dataset based on crossstrategy/omics agreement was defined following their comparison with published literature. The proteomic analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 “verified” proteins based on the agreement of at least 2 strategies. This approach revealed findings of higher validity, as supported by a higher level of agreement in the literature data than those of individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics datasets and ultimately generate models from valid observations

    No evidence of differential impact of sunflower and rapeseed oil on biomarkers of coronary artery disease or chronic kidney disease in healthy adults with overweight and obesity: result from a randomised control trial

    Get PDF
    Purpose: The perceived benefits and risks associated with seed oil intake remain controversial, with a limited number of studies investigating the impact of intake on a range of compounds used as cardiometabolic markers. This study aimed to explore the proteomic and cardiometabolic effects of commonly consumed seed oils in the UK, with different fatty acid profiles. Methods: In a parallel randomised control design, healthy adults (n = 84), aged 25–72 with overweight or obesity were randomised to one of three groups: control (habitual diet, CON); 20 mL rapeseed oil per day (RO), or 20 mL sunflower oil per day (SO). Blood, spot urine and anthropometric measures were obtained at 0, 6 and 12 weeks. Proteomic biomarkers analysis was conducted for coronary arterial disease (CAD) and chronic kidney disease (CKD) using capillary electrophoresis coupled to mass spectrometry (CE-MS). Blood lipids, fasting blood glucose, glycative/oxidative stress and inflammatory markers were also analysed. Results: No differences in change between time points were observed between groups for CAD or CKD peptide fingerprint scores. No change was detected within groups for CAD or CKD scores. No detectable differences were observed between groups at week 6 or 12 for the secondary outcomes, except median 8-isoprostane, ~ 50% higher in the SO group after 12-weeks compared to RO and CON groups (p = 0.03). Conclusion: The replacement of habitual fat with either RO or SO for 12 weeks does not lead to an improvement or worsening in cardiovascular health markers in people with overweight or obesity. Trial registration: Trial registration clinicaltrials.gov NCT04867629, retrospectively registered 30/04/2021

    Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease

    Get PDF
    Background: Cardiovascular disease (CVD) describes the pathological conditions of the heart and blood vessels. Despite the large number of studies on CVD and its etiology, its key modulators remain largely unknown. To this end, we performed a comprehensive proteomic analysis of blood plasma, with the scope to identify disease-associated changes after placing them in the context of existing knowledge, and generate a well characterized dataset for further use in CVD multi-omics integrative analysis. Methods: LC–MS/MS was employed to analyze plasma from 32 subjects (19 cases of various CVD phenotypes and 13 controls) in two steps: discovery (13 cases and 8 controls) and test (6 cases and 5 controls) set analysis. Following label-free quantification, the detected proteins were correlated to existing plasma proteomics datasets (plasma proteome database; PPD) and functionally annotated (Cytoscape, Ingenuity Pathway Analysis). Differential expression was defined based on identification confidence (≥ 2 peptides per protein), statistical significance (Mann–Whitney p value ≤ 0.05) and a minimum of twofold change. Results: Peptides detected in at least 50% of samples per group were considered, resulting in a total of 3796 identified proteins (838 proteins based on ≥ 2 peptides). Pathway annotation confirmed the functional relevance of the findings (representation of complement cascade, fibrin clot formation, platelet degranulation, etc.). Correlation of the relative abundance of the proteins identified in the discovery set with their reported concentrations in the PPD was significant, confirming the validity of the quantification method. The discovery set analysis revealed 100 differentially expressed proteins between cases and controls, 39 of which were verified (≥ twofold change) in the test set. These included proteins already studied in the context of CVD (such as apolipoprotein B, alpha-2-macroglobulin), as well as novel findings (such as low density lipoprotein receptor related protein 2 [LRP2], protein SZT2) for which a mechanism of action is suggested. Conclusions: This proteomic study provides a comprehensive dataset to be used for integrative and functional studies in the field. The observed protein changes reflect known CVD-related processes (e.g. lipid uptake, inflammation) but also novel hypotheses for further investigation including a potential pleiotropic role of LPR2 but also links of SZT2 to CVD

    Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: improving coverage and validity of –omics findings

    Get PDF
    Characterization of disease-associated proteins improves our understanding of disease pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to address these issues, we investigated the value of parallel analysis of compartment-specific proteomes with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) agreement. The validity of the individual datasets and of a “verified” dataset based on cross-strategy/omics agreement was defined following their comparison with published literature. The proteomic analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 “verified” proteins based on the agreement of at least 2 strategies. This approach revealed findings of higher validity, as supported by a higher level of agreement in the literature data than those of individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics datasets and ultimately generate models from valid observations

    The novel urinary proteomic classifier HF1 has similar diagnostic and prognostic utility to BNP in heart failure

    Get PDF
    Aims: Measurement of B‐type natriuretic peptide (BNP) or N‐terminal pro‐BNP is recommended as part of the diagnostic workup of patients with suspected heart failure (HF). We evaluated the diagnostic and prognostic utility of the novel urinary proteomic classifier HF1, compared with BNP, in HF. HF1 consists of 85 unique urinary peptide fragments thought, mainly, to reflect collagen turnover. Methods and results: We performed urinary proteome analysis using capillary electrophoresis coupled with mass spectrometry in 829 participants. Of these, 622 had HF (504 had chronic HF and 118 acute HF) and 207 were controls (62 coronary heart disease patients without HF and 145 healthy controls). The area under the receiver operating characteristic (ROC) curve (AUC) using HF1 for the diagnosis of HF (cases vs. controls) was 0.94 (95% CI, 0.92–0.96). This compared with an AUC for BNP of 0.98 (95% CI, 0.97–0.99). Adding HF1 to BNP increased the AUC to 0.99 (0.98–0.99), P < 0.001, and led to a net reclassification improvement of 0.67 (95% CI, 0.54–0.77), P < 0.001. Among 433 HF patients followed up for a median of 989 days, we observed 186 deaths. HF1 had poorer predictive value to BNP for all‐cause mortality and did not add prognostic information when combined with BNP. Conclusions: The urinary proteomic classifier HF1 performed as well, diagnostically, as BNP and provided incremental diagnostic information when added to BNP. HF1 had less prognostic utility than BNP
    corecore