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Integrative analysis of extracellular 
and intracellular bladder cancer cell 
line proteome with transcriptome: 
improving coverage and validity of 
–omics findings
Agnieszka Latosinska1,2, Manousos Makridakis1, Maria Frantzi3, Daniel M. Borràs4,5,6, 
Bart Janssen4, William Mullen7, Jerome Zoidakis1, Axel S. Merseburger8,9, Vera Jankowski10, 
Harald Mischak3,7 & Antonia Vlahou1

Characterization of disease-associated proteins improves our understanding of disease 
pathophysiology. Obtaining a comprehensive coverage of the proteome is challenging, mainly due 
to limited statistical power and an inability to verify hundreds of putative biomarkers. In an effort to 
address these issues, we investigated the value of parallel analysis of compartment-specific proteomes 
with an assessment of findings by cross-strategy and cross-omics (proteomics-transcriptomics) 
agreement. The validity of the individual datasets and of a “verified” dataset based on cross-strategy/
omics agreement was defined following their comparison with published literature. The proteomic 
analysis of the cell extract, Endoplasmic Reticulum/Golgi apparatus and conditioned medium of T24 
vs. its metastatic subclone T24M bladder cancer cells allowed the identification of 253, 217 and 256 
significant changes, respectively. Integration of these findings with transcriptomics resulted in 253 
“verified” proteins based on the agreement of at least 2 strategies. This approach revealed findings 
of higher validity, as supported by a higher level of agreement in the literature data than those of 
individual datasets. As an example, the coverage and shortlisting of targets in the IL-8 signalling 
pathway are discussed. Collectively, an integrative analysis appears a safer way to evaluate -omics 
datasets and ultimately generate models from valid observations.

High-resolution –omics technologies hold the promise of significantly improving our knowledge of disease patho-
physiology. Integration of –omics data and their in-depth interpretation in the context of the existing literature, 
are required to maximize the knowledge extracted from individual datasets. Implementation of this approach 
could catalyze the development of novel biology-driven drug targets1. In particular, studies at the protein level are 
highly relevant, since proteins directly reflect the disease related phenotypic changes and comprise the vast major-
ity of approved drug targets2,3. Although recent advances in mass spectrometry (MS)-based technologies enable 
proteomics investigations with increased sensitivity, numerous challenges remain to be met, mainly related to the 
proteome vast complexity and (biological) variability, mandating the analysis of multiple independent samples 
in order to reach statistical significance4,5. Additionally, to increase proteome coverage, extensive fractionation 
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at the peptide and/ or protein level have been advocated6–8. The latter include enrichment strategies for secreted 
proteins, which have gained increasing attention, as means to understand cancer invasion9–11.

Regardless the applied technique, proteomics analysis generally delivers numerous potentially 
disease-associated proteins. This is especially of value in Systems Biology approaches12–16 targeting to obtain a 
spherical view of the disease molecular profile and underlying causative events, and where comprehensiveness is 
needed. However, verifying all of the identified changes at a single protein level, e.g. via immunohistochemistry 
or ELISA, appears an impossible task, hence frequently compromising validity of the vast majority of reported 
–omics findings. To increase confidence on the results obtained from large-scale experiments, an integration of 
various –omics datasets appears to be a valuable alternative17,18. In the study presented here, we investigated if 
cross-omics comparisons and respective investigation of consistency in trends of expression are in fact increasing 
the validity of the obtained results. In addition, and specifically for proteomics investigations, we target to show 
that the application of different fractionation strategies, - besides increasing confidence in individual findings 
via cross-strategy agreement,- increases proteome coverage and facilitates shortlisting of biologically relevant 
biomarkers.

As a model system, we chose metastatic bladder cancer (BCa) represented by two syngeneic cell lines, T24 
and its metastatic subclone T24M. Metastatic BCa is associated with very low survival19, hence, understanding 
the molecular processes and identifying improved therapeutic targets is an unmet, clinical need. High-resolution 
LC-MS/MS analysis was conducted on samples enriched in secreted proteins, (isolated from conditioned 
medium-CM and Endoplasmic reticulum and Golgi apparatus (ER/Golgi) fractions, as carrying the cargo of 
secreted proteins), as well as total cell extract (CE). Total RNA sequencing analysis was utilized to complement 
and validate the large scale proteomic data sets. To assess the validity of findings in an unbiased way, these find-
ings were compared to literature data represented by the BcCluster BCa database (http://bccluster.org/)20 and 
retrieved using the GLAD4U tool (http://bioinfo.vanderbilt.edu/glad4u/)21. As shown, cross-strategy and –omics 
comparisons at the individual molecule and pathway levels increase the credibility of individual observations and 
improve proteome coverage consequently increasing data extraction from individual –omics experiments for 
further systems biology and/or targeted investigation.

Results
Proteomic data assessment. The high-resolution proteomic analysis was performed on samples enriched 
in secreted proteins (analysis of CM and ER/Golgi fractions) and CE, aiming at increasing proteome coverage. 
The respective workflow is depicted in Fig. 1. The results from 5 independent experiments per cell compartment 
indicate high-resolution and good reproducibility of the applied procedures. As shown in Table 1, for each exper-
imental approach an average ( ±  SD) of 10,062 ( ±  466), 7,298 ( ±  490), 6,053 ( ±  1,407) peptides, corresponding 
to 1,944 ( ±  85), 1,515 ( ±  75), 1,116 ( ±  164) proteins were identified in CE, ER/Golgi and CM, respectively. 
Detailed lists of proteins identified per individual MS-run (including/ excluding single peptide IDs) are provided 
in Supplementary Table S1. To increase reliability of protein identification and differential expression analysis, 
only proteins identified based on at least 2 unique peptides (in each individual run) and in at least 3/5 replicates 
in each cell line were considered for further analysis. The reproducibility rates were high with overlap among 
replicates on average of 77% (CE), 73% (ER/Golgi) and 76% (CM) of proteins detected in at least 3/5 replicates 
in each case (Supplementary Fig. S1). These corresponded to a total number of 1,359, 1,062 and 816 non-redun-
dant proteins from CE, ER/Golgi and CM, respectively, considered for further differential expression analysis 
(Supplementary Dataset S1).

Figure 1. Overview of the study workflow. The main steps of data collection and analysis are presented.

http://bccluster.org/
http://bioinfo.vanderbilt.edu/glad4u/
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To obtain an estimate of the enrichment efficiency for secreted proteins, the SignalP algorithm, which predicts 
the presence of signal peptides (defining “secreted” proteins), was employed22 (Supplementary Dataset S1). In 
overall, 30% of proteins in CM were predicted to have signal peptide in comparison to 14% in the ER/Golgi frac-
tion and 9% in CE, indicating the relative efficiency of the enrichment strategies. The normalized signal intensity 
of these ‘secreted’ proteins corresponded on average to 49.80%, 16.72% and 6.67% of the total intensity for CM, 
ER/Golgi and CE, respectively. Moreover, enrichment efficiency was assessed based on the normalized average 
intensity values of specific proteins being representative for each fraction (Supplementary Fig. S2). Actin cyto-
plasmic 1 and histone H2B type 1-K (protein markers for CE) were highly expressed in CE, whereas their abun-
dance was reduced in CM (by approximately 2 fold for Actin, 10 fold for H2B type 1-K), and for H2B type 1K also 
reduced (approximately 4 fold) in ER/Golgi (Supplementary Fig. S2). On a similar note, calumenin and 78kDa 
glucose regulated protein (markers for ER/Golgi) levels were higher in ER/Golgi (by about 2 fold) compared to 
CE and CM. Cathepsin B and Proactivator polypeptide (markers for CM) levels were found increased (by at least 
5 fold) in CM compared to CE and ER/Golgi (Supplementary Fig. S2). Taken together, these results support that 
the different strategies provided to some extent complementary information. However, large overlaps could also 
be observed (described below) allowing for investigation of consistencies among the differentially expressed pro-
teins per method, as a means to increase confidence in individual observations.

Complementarity of proteomic profiles. Comparative analysis of the 1,359 proteins identified in the 
CE, the 1,062 proteins detected in ER/Golgi and the 816 proteins found in CM revealed an overlap of 498 proteins 
(Fig. 2). This “core proteome” included multiple enzymes, ribosomal and cytoskeletal proteins, some signalling 
proteins and also abundant chromosomal proteins (such as histones; Supplementary Dataset S1). Each experi-
mental approach also enabled the identification of multiple proteins not detected by the other two methods (408 
for CE, 166 for ER/Golgi and 219 for CM; Fig. 2). The former included various nuclear and transcription factors 
and mitochondrial enzymes, the ER/Golgi fraction had multiple proteins synthesis-related (Protein Niban, ribo-
somal proteins, DnaJ homolog subfamily C member etc) and signalling proteins (RAS-related proteins, kinases, 
cell membrane receptors such as EGFR etc) and the CM fraction included various growth factors, interleukins, 
matricellular proteins and proteases, indicating a good degree of complementarity between these strategies 
(Supplementary Dataset S1).

Proteins exhibiting a nominal significant change (p <  0.05, Mann Whitney test) in their expression levels 
(>1.5 fold change) between the two cell lines in respective subcellular fractions were defined as differentially 
expressed. Based on these requirements, 253 (144-up and 109-down regulated), 217 (116-up and 101-down reg-
ulated) and 256 (169-up and 87-down regulated) proteins were considered as significantly altered among CE, 
ER/Golgi and CM, respectively in T24M vs. T24 cells (Supplementary Dataset S1). Upon Benjamini-Hochberg 
correction and considering the adjusted p-value (p <  0.05) and the fold change threshold ( >1.5), a total of 171 
and 206 proteins were defined as differentially expressed in CE and CM, respectively (Supplementary Dataset S1);  
whereas none of the ER/Golgi differentially expressed proteins remained significant upon application of FDR 
correction. This indicates higher variability of this specific dataset, likely being a consequence of the applied 
multi-step enrichment protocol. Considering the low number of samples analyzed (n =  5 per group) as well as the 
observed consistency in expression trends among different fractions (as explained below), we further focused on 
the differentially expressed proteins (>1.5 fold change) defined using unadjusted p-value.

To obtain an initial insight in the biological function of the observed differentially abundant proteins per 
approach (i.e. the aforementioned 253, 217 and 256 proteins identified in CE, ER/Golgi fraction and CM analysis, 
respectively), gene ontology information deposited in protein databases (Uniprot23,24 and NeXtProt25) was investi-
gated. Comparative analysis revealed that the percentage of differentially expressed proteins involved in metabolic 
processes, intracellular transport of various compounds (e.g. proteins, ions, lipids), protein folding, redox reac-
tions and response to stress was higher in CE than in CM and ER/Golgi fraction (Fig. 3); whereas differentially 
expressed proteins implicated in proteolytic events, regulation of endopeptidase activity, extracellular matrix 
organization/ remodelling, migration, angiogenesis as well as signal transduction and cell proliferation were more 
prominent in CM vs. CE and ER/Golgi. In addition, the percentage of differentially abundant proteins associated 
with mRNA processing and splicing, protein synthesis as well as organization of actin cytoskeleton was increased 
in ER/Golgi when compared to the other samples (Fig. 3). These findings further indicate the complementarity 
of the applied enrichment strategies.

Conditioned 
Medium

ER/Golgi 
Fraction

Total Cell 
Extract

Avg. number of peptides

 T24 5,814 ±  19,48 7,354 ±  295 9,887 ±  515

 T24M 6,292 ±  716 7,241 ±  667 10,237 ±  382

 T24 and T24M 6,053 ±  14,07 7,298 ±  490 10,062 ±  466

Avg. number of proteins

 T24 1,083 ±  224 1,530 ±  55 1,922 ±  108

 T24M 1,150 ±  86 1,501 ±  96 1,965 ±  57

 T24 and T24M 1,116 ±  164 1,515 ±  75 1,944 ±  85

Table 1.  Summary of the average number of peptides and proteins (including single peptide 
identifications) identified in individual samples (n = 5) in the T24 and T24M bladder cancer cells.
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Consolidation of the differentially abundant proteins from all experimental approaches (CE, ER/Golgi and 
CM) resulted in a total of 614 non-redundant changes (Supplementary Dataset S2). Some proteins (n =  19) were 
predicted by all 3 proteomics strategies to be differentially expressed and at similar trends of expression (up or 
down) in the T24M vs. T24 cells (Table 2). These included proteins involved in actin binding such as gelsolin and 

Figure 2. Overview of the numbers of proteins identified in total cell extract, ER/Golgi fraction and 
conditioned medium. Venn diagram representing a comparative analysis of all proteins (≥2 peptides) 
identified following application of the three individual protein fractionation strategies.

Figure 3. Functional analysis of differentially expressed proteins. Comparison of biological functions for the 
differentially expressed proteins identified in total cell extract, ER/Golgi fraction and conditioned medium.
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plastin-3, proteases (cytosol aminopeptidase), but also various enzymes [Glucose-6-phosphate 1-dehydrogenase, 
NAD(P)H dehydrogenase [quinone] 1, phospholipase D3, and others]. An additional 70 proteins belonging to 
various proteins families [signaling molecules such as Signal transducer and activator of transcription 1-alpha/
beta; metabolic enzymes such as Fatty acid synthase, UDP-glucose 6-dehydrogenase, Aldehyde dehydrogenase, 
and others; proteins involved in cell interactions such as Annexins (ANXA2 and ANXA6) etc.] were found to be 
de-regulated and at similar trends of expression by two fractionation strategies. Collectively, agreement in trends 
of expression and statistical significance between the strategies increases the confidence in individual observa-
tions (a total of 89 differentially expressed proteins as supported by at least two fractionation strategies may be 
considered “cross-validated”, hence of higher confidence). In addition, and as shown in Supplementary Dataset S2,  
some significant changes supported by one fractionation strategy were also suggested by other strategies and 
at the same trends of expression in the T24M versus T24 cells, nevertheless did not pass the applied thresholds  
(of at least 1.5 fold change and/or p <  0.05) in the latter. This observation (applying to approximately 40 proteins 
per strategy) further facilitates prioritization and establishing confidence in individual findings.

Assessment of the validity of proteomic findings by mRNA sequencing analysis. To further 
assess the validity of the observed proteomic changes, mRNA sequencing data were obtained from the studied 
cell lines using different biological replicates. Corresponding transcripts for the vast majority of proteins existed. 
Specifically, corresponding mRNA sequences were found for 1,358 out of 1,359 proteins detected in CE (>99%); 
1,061 out of 1,062 proteins in ER/Golgi; and 811 out of 816 proteins detected in CM (>99%).

Among the 253 differentially expressed proteins detected in CE, 98 were also detected with a fold change 
above 1.5 at the mRNA level. Of the 217 differentially abundant proteins from the ER/Golgi fraction, 85 were 
also found to be changed at the mRNA levels (fold change >1.5); while among the 256 differentially abundant 
proteins obtained in CM, 84 were also found to be differentially expressed at the mRNA level. When combined, 
a total of 210 proteomic changes can be considered as “verified” via agreement with the transcriptomics results 
(Supplementary Dataset S2). These 210 “verified” findings included various proteins which were defined as dif-
ferentially expressed in at least two proteomic experiments (Supplementary Dataset S2; proteins marked in red 
or blue with asterisk) and also proteins which were predicted to be differentially expressed by one only proteomic 
approach (CE or ER/Golgi or CM; Supplementary Dataset S2; protein marked in green with asterisk), increasing 
the total number of “verified” findings based on data cross-validation from 89 (cross-validation based on agree-
ment of at least two protein fractionation strategies) to 253 (agreement of at least two –omics strategies; any of 
protein fractionation approaches and/or transcriptomics, Supplementary Dataset S2). These “verified” features 
represent a variety of protein families including multiple signalling molecules (e.g. protein kinase C and casein 
kinase substrate in neurons protein 2, RAS suppressor protein 1, Tyrosine-protein kinase Yes, Interleukin-8, 
Macrophage colony-stimulating factor 1, Interleukin-6, Vascular endothelial growth factor C and others), pro-
teases (Cathepsin L1, Cytosol aminopeptidase, Carboxypeptidase A4 and others), components of extracellu-
lar matrix (such as Fibronectin type III domain-containing protein 3B, Collagen alpha-1(XVIII or XII) chain, 
Laminin subunit gamma-1 or beta-1, Metalloproteinase inhibitor 3, and others) and also various enzymes (such 

Accession Protein Name

Cell-Extract ER/Golgi Conditioned Medium

Fold 
Change p-value

Fold 
Change p-value

Fold 
Change p-value

P08582** Melanotransferrin only T24M 0.01 2.52 0.01 Only T24M 0.01

P05161** Ubiquitin-like protein ISG15 4.99 0.01 6.06 0.01 Only T24M 0.01

Q13642** Four and a half LIM domains protein 1 2.31 0.01 1.86 0.01 10.8 0.01

P61769** Beta-2-microglobulin 1.78 0.05 16.68 0.03 1.60 0.03

Q14011** Cold-inducible RNA-binding protein 1.52 0.01 Only T24M 0.02 1.76 0.05

Q09666** Neuroblast differentiation-associated protein 
AHNAK 0.64 0.01 0.52 0.01 0.54 0.01

Q01813** 6-phosphofructokinase type C 0.54 0.01 0.30 0.01 only T24 0.02

P15559** NAD(P)H dehydrogenase [quinone] 1 0.54 0.01 0.51 0.05 0.12 0.01

P06396** Gelsolin 0.53 0.01 0.51 0.01 0.48 0.01

Q9UBG0** C-type mannose receptor 2 0.52 0.03 0.4 0.02 0.54 0.01

P11413** Glucose-6-phosphate 1-dehydrogenase 0.52 0.01 0.51 0.01 0.56 0.01

P08670 Vimentin only T24M 0.01 Only T24M 0.01 Only T24M 0.01

P28838 Cytosol aminopeptidase 2.22 0.01 3.57 0.01 2.46 0.01

P13797 Plastin-3 1.79 0.01 1.63 0.01 1.66 0.01

P05362 Intercellular adhesion molecule 1 1.64 0.01 2.3 0.01 3.05 0.01

O95336 6-phosphogluconolactonase 1.60 0.01 3.79 0.01 4.15 0.01

P26639 Threonine--tRNA ligase, cytoplasmic 1.54 0.01 1.50 0.01 2.32 0.01

P00492 Hypoxanthine-guanine phosphoribosyltransferase 1.51 0.01 2.12 0.01 1.77 0.01

Q8IV08 Phospholipase D3 1.86 0.01 Only T24M 0.02 only T24M 0.02

Table 2.  Differentially expressed proteins in T24M versus T24 cells supported by all three proteomics 
strategies. **Differential expression (fold change >1.5) was also supported by transcriptomics.
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as NAD(P)H dehydrogenase [quinone]1, Thymidine phosphorylase, Glucose-6-phosphate 1-dehydrogenase, 
NADH-cytochrome b5 reductase 3 and others).

Assessment of the validity of the multi –omics approach and its potential application. The 
validity of the differentially expressed proteins reported in individual proteomics experiments (CE, ER/Golgi, 
CM) as well as in the integrated “verified” dataset (abovementioned 253 proteins) was evaluated in the context 
of existing literature. Molecular features associated with BCa invasion or metastasis were retrieved using two 
independent approaches i.e. the BcCluster database20 (n =  627) and the GLAD4U21 tool (n =  671; Supplementary 
Dataset S3), as described in Methods. Validity was assessed based on the overlap between our experimental data 
and literature findings (listed in Supplementary Dataset S3). As presented in Table 3, the percentage of over-
lapping features between the “compiled” (CE, CM, ER/Golgi, i.e. 614 proteins) dataset and literature, was 8.8% 
(BcCluster) and 11.6% (GLAD4U); whereas for the verified findings (i.e. 253 proteins), the agreement with the 
literature data was generally higher (overlap range: 13.0–15.8% depending on the comparison (Table 3).

Considering the increased validity of the latter dataset, these 253 proteins were mapped to pathways using the 
Ingenuity software. The predicted statistically significant de-regulated pathways (p <  0.05, Fisher exact test) were 
shortlisted, based on their significance level, and the top 15 pathways with the lowest p-value are summarized 
in Table 4. As a representative example, we present the IL-8 signalling pathway, which notably was the only one 
found in the top 15 significant pathways predicted based on the literature data and also significant on each indi-
vidual proteomics dataset. The graphical representation of the IL-8 signalling pathway is shown on Fig. 4 with 
the differentially expressed features, as detected per individual –omics method, highlighted. As presented, the 
molecular coverage of the IL-8 pathway increases through the integrative analysis, further reflecting the comple-
mentarity of the different approaches. Furthermore, as shown, the vast majority of molecular changes are consid-
ered “verified” (Fig. 4 - red frame). Based on this scheme, the chances that the observed “non-verified” changes 
(e.g. changes supported by one only –omics approach; purple frame) are valid increase, based on their biolog-
ical relevance. To test this hypothesis the differential expression of the Vasodilator-stimulated phosphoprotein 
(VASP) was investigated in a set of invasive and non-invasive BCa tissue specimens by western blot. As shown 
in Supplementary Fig. S3, in line with the ER/Golgi proteomics analysis, a decrease in the level of this protein in 
invasive versus non-invasive tumors is suggested.

Discussion
Omics datasets are mine of information, nevertheless only a limited part of it is finally extracted and further inves-
tigated mainly due to challenges associated with: a) establishing reliability of findings (typically large numbers of 
differentially abundant proteins of low statistical power are identified per omics experiment); and b) developing 
targeted assays for further measurement of individual features, as a means for their verification. Particularly, 
frequent lack of specific antibodies and the associated costs of performing immuno-based assays result in only a 
small number of proteomics findings being ultimately confirmed (typically less than 10 per experiment). These 
verified findings, even though of high value, are not sufficient to comprehensively describe a disease at the molec-
ular level. However, such comprehensive description is required for the successful application of spherical “sys-
tems biology” approaches12. In the case of proteomics studies more specifically, comprehensiveness and proteome 
coverage are dependent on the applied technique, with different subcellular fractions requiring the use of different 
enrichment strategies for their efficient resolution. The presented approach involving use of different enrichment 
strategies as well as transcriptomics, addressed the added value of cross-strategy, cross-omics comparisons and 
respective investigation of consistency in trends of expression, in increasing confidence in individual findings per 
omics dataset.

We focused on the analysis of BCa metastasis using a cell line model for the specific phenotype. This consti-
tutes a clinically relevant question, as limited therapeutic options are available for patients with BCa metastatic 
disease, highlighting the need for development of novel therapeutic targets19.

Cell line study (T24M vs. T24) # overlapping molecules

Category # molecules BcCluster Glad4U

Individual proteomic analysis

Total cell extract 253 19 (7.5%) 27 (10.7%)

ER/Golgi 217 22 (10.1%) 28 (12.9%)

Conditioned medium 256 27 (10.5%) 38(14.8%)

Compilation from all proteomics methods 614 54 (8.8%) 71 (11.6%)

 “omics” verified findings

Agreement in all 4 strategies 11 2 (18.2%) 4 (36.4%)

Agreement in 2 or 3 out of 4 strategies 242 31 (12.8%) 36 (14.9%)

All verified proteins 253 33 (13.0%) 40 (15.8%)

Table 3.  Assessment of the validity of proteomics findings based on literature. Findings from individual 
proteomics experiments (CE, ER/Golgi, CM) as well as from the “verified” dataset (established based on 
statistical significance and expression trend agreement between at least 2 strategies e.g. proteomics analysis of 
CE, ER/Golgi, CM, and transcriptomics) were evaluated. Proteins extracted from the bladder cancer database 
(BcCluster)20 and by using GLAD4U21 were utilized as reference.
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We placed special emphasis on the investigation of the secreted/ extracellular matrix proteome, considered of 
high relevance in cancer invasion and metastasis11. In parallel to the classical analysis of CM, we also investigated 
the ER/Golgi fraction, representing the path of proteins on their way to be secreted26. As recently demonstrated 
and also shown in our analysis, this latter method is of lower enrichment efficiency for bona fide secreted proteins 
in comparison to the analysis of CM, nevertheless, it can provide new information and highly complementary 
results to the latter (CM)27. Even though one cannot rule out the possibility that some of the observed differences 
(or overlaps) between protein identifications from different fractions may reflect sub-optimal enrichment and/
or differences in starting protein amounts (e.g. 5 μ g for CE, 3.5 μ g for ER/Golgi and 3.75 μ g for CM analyzed by 
LC-MS/MS - Methods), the overall specificity of the employed techniques is supported by the Signal IP analysis 

# Ingenuity Canonical Pathways Molecules
Rank,  

Cell extract Rank, ER/Golgi Rank, CM
Rank, 

Glad4U
Rank, 

BCCluster

1 Interferon Signaling IFIT1, STAT1, IFIT3, ISG15, MX1, IFI35, BAX 5 3 Not predicted 303 272

2 Superoxide Radicals Degradation SOD2, SOD3, CAT, NQO1 34 92 (n.s.) 8 313 Not predicted

3 Caveolar-mediated Endocytosis  
Signaling

HLA-A, ITGAV, DNM2, ITGB1, ITGA6, B2M, 
HLA-B, FLOT2 28 5 20 282 233

4 Hepatic Fibrosis / Hepatic Stellate  
Cell Activation

NFKB2, IGFBP4, COL12A1, STAT1, CSF1, 
BAX, IL6, ICAM1, VEGFC, COL18A1, CXCL8, 
MYH9

200 (n.s.) 197 (n.s.) 2 4 8

5 Role of Tissue Factor in Cancer ITGAV, ITGB1, CSF1, ITGA6, CXCL1, YES1, 
VEGFC, CXCL8, ARRB1 100 (n.s.) 19 34 27 15

6 Role of IL-17F in Allergic 
Inflammatory Airway Diseases NFKB2, CXCL6, CXCL10, CXCL1, IL6, CXCL8 275 (n.s.) Not predicted 11 120 242

7 Putrescine Degradation III ALDH3A2, IL4I1, ALDH3A1, ALDH1A3 19 45 149 (n.s.) 348 (n.s.) 336 (n.s.)

8 Tryptophan Degradation X 
(Mammalian, via Tryptamine) ALDH3A2, IL4I1, ALDH3A1, ALDH1A3 21 47 154 (n.s.) 351 (n.s.) 340 (n.s.)

9 Ethanol Degradation IV ALDH3A2, CAT, ALDH3A1, ALDH1A3 6 52 Not predicted 357 (n.s.) 420 (n.s.)

10 Complement System CFB, C3, C1QBP, C1S, C1R Not predicted 195 (n.s.) 3 Not predicted 339 (n.s.)

11 Dopamine Degradation ALDH3A2, IL4I1, ALDH3A1, ALDH1A3 27 59 168 (n.s.) 320 362 (n.s.)

12 IL-8 Signaling ITGAV, PLD3, CXCL1, GNG12, BAX, LASP1, 
RAC2, ICAM1, VEGFC, CXCL8 75 17 62 8 4

13 Virus Entry via Endocytic 
Pathways

HLA-A, DNM2, ITGB1, ITGA6, B2M, HLA-B, 
RAC2 72 4 24 213 99

14
Role of Pattern Recognition 
Receptors in Recognition of 
Bacteria and Viruses

EIF2AK2, NFKB2, C3, OAS3, OAS2, DDX58, 
IL6, CXCL8 59 128 (n.s.) 23 55 166

15 Pentose Phosphate Pathway TKT, G6PD, PGLS 8 26 26 380 (n.s.) 391 (n.s.)

Table 4.  Top 15 Ingenuity Canonical Pathways predicted to be enriched (p < 0.05) based on the integrated 
“verified” dataset. Pathways were ranked based on the significance level. Subsequently, the overlap between 
the top 15 pathways, as defined based on the integrated “verified” dataset, and pathways predicted based on the 
individual proteomics datasets (CE, ER/Golgi, CM) and literature mined dataset was established. The respective 
rank for the overlapping pathways is indicated. Significant pathways with the rank ≤  15 are marked in bold, 
while significant pathways with rank >  15 are marked in italics. (n.s. not significant results).

Figure 4. Graphical representation of the IL-8 signaling pathway based on multi-omics profiling. Protein 
changes identified by each of the individual proteomics strategies (CE, ER/Golgi, CM) are shown, as well as 
those supported by at least two experimental strategies (CE, ER/Golgi, CM, transcriptomics). The expression 
trend of each molecule in T24M vs. T24 cells is indicated with arrows (↑ for up- and ↓ for down-regulated 
proteins in T24M vs. T24).
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and respective analysis of protein abundance per fraction (Supplementary Fig. S2). Furthermore, the overall 
enrichment efficiency in our study is in line with previously published reports28,29.

Several proteomics studies have been published involving characterization of changes underlying BCa inva-
sion either at the total cell30–32 or extracellular proteome33–35 using various BCa cell line models. A high overlap 
between the reported identifications in our study and the existing literature was observed, further supporting the 
validity of the reported findings. Specifically, our shotgun analysis enabled detection of the majority (at least 69%)  
of proteins identified in previous proteomics studies of total cell proteome from T24M vs. T2431 and T24T vs. 
T2430 cells. Along the same lines, the majority of proteins previously identified in CM from T24M and/or T24 
cells33,35 were also found in our analysis. These multiple existing studies serve as reference points, nevertheless 
their findings remain disparate and any potential added value from the parallel proteomic analysis of different cell 
compartments can be assessed with moderate confidence only.

As the first step in this direction, and to establish the relevance of each individual proteomics dataset, we eval-
uated our main findings in the context of the existing literature. We used a manually curated database of features 
(genes, transcripts, proteins) associated with BCa invasion/ progression (BcCluster)20. Importantly, BcCluster 
lists molecules highlighted from studies with sample size of at least 50, suggesting a high validity of the collected 
features. The second dataset contains the list of the BCa-associated molecules retrieved using the GLAD4U21 tool, 
without any sample size selection criteria. The two datasets appear to be highly complementary, with an overlap 
of 179 features, (corresponding to over 25% of features from each literature set), further supporting the assump-
tion that these two approaches provide a good and comprehensive reflection of the current knowledge. It should 
be noted, that these literature data used as reference in our study include entries reported from different –omics 
(genomics, proteomics, transcriptomics) as well as non-omics (e.g. immunohistochemistry) studies, apparently 
collected under different applied methodologies. Investigation of the inter-laboratory variability reflected in these 
databases would be out of the realm of this study, nevertheless it is expected that this exists. Even though the 
latter clearly compromises comparability of different studies, on a positive note, it may also be used as a means to 
increase confidence in individual findings, based on their detection in multiple studies and under different pro-
tocols. Along these lines, multiple observed protein changes included in the individual datasets (CE, ER/Golgi, 
CM) had already been reported in the context of BCa invasion/ progression or metastasis. Independently of the 
source of literature data, as aforementioned (Results), overlap ranged from approximately 7 to 15% depending on 
the applied proteomics strategy.

Taking this one step further, an integration of –omics datasets from different molecular levels (proteomics - 
transcriptomics) was also performed. For almost all proteins identified by LC-MS/MS, we were able to obtain the 
corresponding mRNA, which strongly supports the reliability of the protein identification process. Even though, 
in general a moderate correlation between mRNA and protein expression is reported18,36, the regulation trend 
was well supported by the transcriptomic analysis for many of the differentially expressed proteins (210 out of 
614 (34%); notably for 344 transcripts a >1.5-fold change was not reached, whereas only 57 exhibited opposite 
trend of expression in the T24M vs T24 cells). It should be noted that the presented transcriptomic analysis has 
some limitations, mostly as a result of the high costs of the next generation sequencing analysis, resulting in a low 
number of analysed samples (n =  2 per cell line) hampering the application of proper statistical analysis.

Through the application of transcriptomics, which complements but also verifies proteomics findings, an 
increase in the number (from 89 up to 253) of cross-validated features obtained in the three individual proteomics 
experiments could be achieved.

The reliability of these latter “cross-validated” proteins was further evaluated in the context of available lit-
erature. An improvement in the agreement with existing literature data is observed (as described in Table 3), 
indicating the applicability and value of such a multi-omics approach to verify large scale proteomics data. Of 
these 253 features, 33 (13.0% BcCluster)20 or 40 (15.8% Glad4U)21 have been associated with BCa/ BCa invasion 
or metastasis. This corresponds to approximately a 5% increase in the overlapping features when compared with 
the respective overlap of all 614 differentially abundant proteins, identified across the three proteomics experi-
ments. This increase appears to be significant, considering that the “verified” dataset consists of a lower number of 
proteins (253) compared to the combined “all differentially expressed proteins” dataset (614). In other words, the 
presented strategy facilitates shortlisting more confident findings, which currently range from the small number 
(regularly less than 10) of verified findings via typical targeted analysis, to the whole list of differentially expressed 
features per omics experiment (regularly prone to many false positives). The described cross-omics comparison 
offers the valuable intermediate step between these two extremes, allowing to maximize extraction of features of 
increased confidence for their further use as input data in systems biology approaches.

As an example in this direction, pathway analysis was conducted. IL-8 signaling was selected, as being pre-
dicted (at high significance levels) to be affected based on all, literature mined datasets as well as individual pro-
teomics datasets (CE, ER/Golgi and CM). As presented in Fig. 4, the integrative analysis of –omics data provided a 
fairly comprehensive molecular phenotype underlying the pleiotropic effects of IL-8 function: The up-regulation 
of IL-8 in the T24M cells was associated with an up-regulation of matrix metalloproteases (MMP2), implicated in 
tumor invasion37, as well as VEGFC and ICAM1, factors implicated in angiogenesis38,39 (Fig. 4). Interestingly, the 
overexpression of MMP2 was accompanied by the down regulation of TIMP metallopeptidase inhibitor 3 (iden-
tified in CM analysis), further supporting the activation of MMPs in the context of BCa invasion. Even more: data 
integration from the different preparation methods (CE, ER/Golgi, CM) links disparate observations revealing 
events in cases not associated with BCa yet. As shown on Fig. 4, formation of chemosynapse is predicted based 
on the observed proteomics changes (involvement of VASP, LASP-1), with anticipated impact on focal adhesion 
and cell migration40,41. In addition, interestingly, involvement of PLD3, a non-classical member (as it lacks lipase 
activity) of the phospholipase D family of enzymes42 is predicted. PLD enzymes have been implicated as key com-
ponents of HRAS signaling in cancer cells43 –with, notably, HRAS also detected at different levels in T24M versus 
T24 cells, based on the proteomics analysis (Fig. 4). In addition, PLD3 has been recently shown to be involved 
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in hypoxia-induced lipid metabolism in colorectal cancer cells44, suggesting collectively, that it merits further 
investigation in BCa. In parallel to these effects, IL-8 signaling also occurs through G protein coupled receptors, 
specifically in our system, through Guanine nucleotide-binding protein subunit gamma-12 (GNG12), not studied 
in BCa yet. Impacts on regulation of calcium channels are expected45,46. Of note, some calcium channels were 
found at differential levels in the T24M versus T24 cells based on the proteomics analysis e.g. Plasma membrane 
calcium-transporting ATPase 1 (CE and ER/Golgi), Calcium-binding mitochondrial carrier protein SCaMC-1 
(CE)-Supplementary Dataset S2.

Collectively, through the proposed combined analysis of multiple cellular fractions and molecular levels, 
these multi-level pleiotropic effects of IL-8 previously described in different publications (reviewed by Waugh 
et al)47 can be better reflected at the molecular level, encompassing changes at the extracellular space (e.g. IL-8 
differential abundance), all the way to the nucleus (e.g. changes on Bax; Fig. 4). There is no doubt that multiple 
missing links still exist nevertheless, such an approach obviously increases coverage (hence confidence), but also 
facilitates definition of targets for further verification. To better explain this point, the example of the VASP, a 
protein involved in cytoskeleton remodeling41 and not yet associated with BCa was provided. Being differen-
tially expressed in the ER/Golgi fraction (only), VASP was not included in the shortlisted proteins (i.e. the 253 
cross-verified findings). Nevertheless, based on its biological relevance to the IL-8 pathway, the chances that this 
finding from the ER/Golgi analysis was not a false association increased. Indeed, by using western blot analysis, 
our preliminary results further supported the down-regulation of VASP in muscle invasive BCa, a finding which 
we currently further investigate.

In conclusion, our study collectively shows that comparative and in parallel analysis of multiple –omics (in 
our case: proteins identified in CE, ER/Golgi and CM and also at a different omics level - transcriptomics) has 
added value on two very important aspects; it can improve proteome coverage and fill missing links, through 
the complementarity of different techniques. Even more, it can increase validity of individual observations, by 
cross-omics correlations, facilitating prioritization of findings and ultimately knowledge extraction. Considering 
the general low statistical power of individual –omics investigations (high number of variables, small sample 
sizes) such a cross-omics and platform analysis appears a safe way forward particularly towards development of 
disease molecular models based on valid experimental observations.

Methods
Sample preparation. Cell culture. T24 and T24M31 BCa cells were employed as described in Makridakis 
et al31. Briefly, cells were cultivated in DMEM medium (High Glucose, GlutaMAX™ , Pyruvate) supplemented 
with 10% FBS and 1% Penicillin-Streptomycin (P/S) and harvested using 0.05% trypsin/0.02% EDTA and cen-
trifugation (1,000×  g, 5 min, room temperature). Cell pellets were washed twice with PBS and stored at − 80 °C 
until further processing. Each experiment was repeated in five replicates (five different flasks with cells originated 
from same initial stock) per condition.

Collection of secreted proteins from conditioned medium (CM). CM was collected are described 
previously27,35 from 10∙106 cells after 24h incubation in serum deprived medium. Protein extraction was per-
formed as described in Latosinska et al27. 75 μ g of proteins were processed by Filter Aided Sample Preparation 
method (FASP), as described below.

Enrichment in Endoplasmic Reticulum/ Golgi Fraction. 20∙106 cells were used in order to enrich for 
ER/Golgi as described by Sarkar el al.26 with minor modifications27. Sequentially, samples were depleted in nuclei 
(3,000 ×  g, 10 min) and mitochondria (10,000 ×  g for 10 min) leading to enrichment for ER/Golgi (16,000 ×  g for 
30 min). Pellet containing the final fraction was dissolved in buffer containing 7M urea, 2M thiourea, 4% CHAPS, 
100 mM DTE and 1% ampholytes. 70 μ g of proteins were processed by FASP.

Preparation of total cell extract. 4∙106 cells were harvested and cell pellet was re-suspended in 200 μ L of 
lysis buffer (7M urea, 2M thiourea, 4% CHAPS, 100 mM DTE, 1% ampholytes). Cells were disrupted by water 
bath sonication for 10 min followed by centrifugation (16,000×  g, 10 min, RT). 100 μ g of proteins were processed 
by FASP.

Filter aided sample preparation (FASP). FASP was performed according to Wisniewski et al48 with 
minor modifications49. Briefly, sequential buffer exchange with urea buffer and ammonium bicarbonate (after 
alkylation with 100 μL of 0.05M IAA) was performed in Amicon Ultra Centrifugal filter devices (0.5 mL, 30 kDa 
MWCO, Millipore) at 16,000×  g for 15 min at room temperature. Proteins were digested overnight on filters with 
1:100 trypsin to protein ratio. Centrifugation and lyophilisation were then applied49.

LC-MS/MS analysis. Lyophilized peptides were re-dissolved in 100 μ L of HPLC grade water. Subsequently, 
5 μ L of the peptide mixture was analysed on a nano-flow system (Dionex Ultimate 3000 RSLS, Dionex, Camberley 
UK), as described before27. Briefly, samples were loaded onto a Dionex nano trap column (C18, 0.1 ×  20 mm 
5 μ m) at a flow rate of 5 μ l/min in 98% 0.1% formic acid and 2% acetonitrile, followed by elution onto an Acclaim 
PepMap nano column (C18, 75 μ m ×  50 cm, 2 μ m 100 Å) at a flow rate of 0.3 μ l/min. Reverse-phase chroma-
tography was performed using a linear gradient of solution A [0.1% formic acid and acetonitrile (98:2)] and 
solution B [0.1% formic acid and acetonitrile (20:80)]. Separation was initiated using 1% solution B (5 min) fol-
lowed by a gradual increase to 30% (400 min) and 50% (480 min). Ionization involved a nano electrospray source 
(Proxeon, Thermo Fisher Hemel UK) in a positive ion mode and MS/MS an Orbitrap Velos FTMS (Thermo 
Finnigan, Bremen, Germany). Ionization voltage was 2.6 kV and the capillary temperature was 200 °C. The mass 
spectrometer was operated in MS/MS mode scanning from 380–2,000 amu. The MS analysis was performed 
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using a data-dependent acquisition (top 40). Changes between MS1 (MS) and MS2 (MS/MS) modes were done 
at 60,000 and 7,500 resolution respectively. Parent ions were fragmented at and energy of 40 by higher energy 
collision-induced dissociation (HCD).

Data processing. The analysis of the raw MS data files was performed using Proteome Discoverer (PD) v. 
1.4.0.288 (Thermo Scientific). An event detection node was used at a setting of 2 ppm. The Human Swiss-Prot 
Database24,50 with 20 277 canonical sequences only (downloaded at 30/10/2013) and the Sequest search engine51 
were employed. The following criteria were applied: a) precursor mass tolerance 10 ppm, b) fragment mass tol-
erance 0.05 Da, c) fix modifications: carbamidomethylation of cysteine, d) variable modifications: oxidation of 
methionine and proline, and e) allowed missed cleavages: one. The false discovery rate (FDR) evaluation was 
performed by using the Percolator node52 (PD 1.4).

Protein identification and label-free quantification. Protein identification was based on the rank 1 
peptides allowing for mass deviation below 5 ppm and FDR below 1%. Only proteins identified with at least 2 
unique peptides in individual samples were included for further analysis. The label-free quantification was based 
on the peak area (i.e. area under the curve), determined based on the extracted ion chromatogram (Precursor 
Ions Area Detector node in PD). Quantification at the protein level was based on the top three peptides per pro-
tein calculated by PD. For the few cases where the protein area was not calculated by the software, as a conse-
quence of lack of integration of the peptide area (a software error), the average area for the particular protein per 
studied group (T24, T24M) was assigned. In the case of proteins not identified in a particular sample, the missing 
value was replaced by zero. Twelve proteins derived from the FBS53 or reagents used for MS were excluded from 
analysis as potential contaminations (Supplementary Table S2). A part per million (ppm)-normalization was 
conducted as follows: = × 

 
Normalized protein area 10Protein area

Total area
6 (equation 1), where the total area was defined 

as a sum of protein areas in each sample. Statistics was performed using SPSS Statistics 17.0 (Mann-Whithney U 
Test) and R-Package (Benjamini-Hochberg correction).

Total mRNA sequencing. Total RNA from T24 and T24M cells was isolated from 10∙106 cells by TRI 
Reagent (Sigma Aldrich) (2 replicates per condition) and obtained RNA extracts were purified with RNeasy 
cleanup kit (Qiagen) including prior digestion with DNase I; both steps were performed according to manu-
facturer’s protocol. The preparation of libraries and sequencing of the mRNA along with the analysis of the raw 
data was performed by GenomeScan B.V. The RNA concentration was assessed using the Life Technologies 
Qubit. Further evaluation of the quality and integrity of isolated RNA was conducted using Agilent Bioanalyzer. 
Subsequently, samples were processed by Illumina® mRNA-Seq Sample Prep Kit according to Illumina protocol. 
Briefly, mRNA isolation was performed using oligo-dT magnetic beads followed by mRNA fragmentation and 
cDNA synthesis. For the latter, the quality and yield was measured via Lab-on-a-Chip analysis (expected prod-
uct size: 200–500 bp). Clustering and DNA sequencing were performed using Illumina cBot and HiSeq2500 in 
line with manufacturer’s instructions at the concentration of 16pM of DNA. Image analysis, base calling and the 
quality check were conducted using the Illumina data analysis pipeline RTAv1.18.64 and Bclfastqv1.8.4. Data 
obtained from the HiSeq2500 in fastq format was used as source for the downstream data analysis. Alignment 
of fastq reads was performed using TopHat version 2.0.1254 against the assembled human genome GRCh37.p13 
with the corresponding Ensembl release 75 annotation55 (http://grch37.ensembl.org/index.html). The alignment 
run involved default parameters but allowing for a genome multihit search and transcriptome build and mapping. 
Alignment quality metrics were collected using Qualimap version 2.0.156. Quantification of feature alignments 
was performed using HTSeq-counts from HTSeq framework version 0.6.1p157. Default parameters were used for 
a non stranded RNA-seq library using the intersection non empty algorithm. Normalization of the count data 
and statistical analysis for the differential expression was performed with DESeq2 package version 1.6.358 for R 
statistical computing software59.

Western Blot. BCa tissue specimens were collected in Germany (Department of Urology and Urological 
Oncology, Hannover Medicine School) from patients undergoing resection of the bladder. All individuals gave 
written informed consent. All experimental protocols for tissue sample collection were approved by the Hannover 
Medical School Ethics committee (case number: 614–2009) and experiments were performed according to rel-
evant guidelines. Specimens from non-muscle invasive (n =  3), muscle invasive (n =  3) BCa and negative biop-
sies (n =  3) were analyzed. Tissue lysis was performed as described earlier49. 20 μ g of total protein per extract 
were separated by NuPAGE®  Gradient Gel 4–12% under reducing conditions and electroblotted to nitrocellu-
lose membrane (LG), as presented elsewhere60. Membranes were incubated overnight at 4 °C with the primary 
mouse anti-VASP antibody (Enzo LifeScience, ALX-804-177-C050, dilution 1:500) or anti- β -actin antibody 
conjugated to HRP (Santa Cruz, sc-47778 HRP, 1:4,000), in the first case followed by incubation with anti-mouse 
HRP-conjugated secondary antibody (Santa Cruz; dilution 1:2,000) for 2h at room temperature. Target protein 
was detected by Enhanced Chemiluminescence (Perkin-Elmer LAS, Inc.).

Literature mining. Molecules (proteins and transcripts) associated with BCa invasion/ progression were 
retrieved from the BCa database (http://bccluster.org/)20. GLAD4U21 was also employed to retrieve relevant 
featured from MEDLINE database using the following keywords: (“bladder cancer” or “urothelial cancer” or 
“transitional cell carcinoma” or “urothelial cancer”) and (“invasion” or “progression” or “invasiveness” or “aggres-
siveness” or “metastasis”) with the undefined threshold settings for genes prioritization.

Functional annotation. The biological function of the differentially expressed proteins was manually evalu-
ated based on the Gene Ontology (GO) annotations retrieved from Uniprot-GOA annotations23 and/ or NeXtProt 

http://grch37.ensembl.org/index.html
http://bccluster.org/
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database25. In parallel, differentially expressed proteins which were considered as “verified” were mapped to path-
ways using QIAGEN’s Ingenuity®  Pathway Analysis (IPA® , QIAGEN Redwood City, www.qiagen.com/ingenu-
ity). Statistical analysis was conducted by using right-tailed Fisher’s exact test. Pathways with a p-value below 0.05 
were considered as significant.
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