7 research outputs found

    Allosteric regulation of glycogen breakdown by the second messenger cyclic di-GMP

    Get PDF
    Streptomyces are our principal source of antibiotics, which they generate concomitant with a complex developmental transition from vegetative hyphae to spores. c-di-GMP acts as a linchpin in this transition by binding and regulating the key developmental regulators, BldD and WhiG. Here we show that c-di-GMP also binds the glycogen-debranching-enzyme, GlgX, uncovering a direct link between c-di-GMP and glycogen metabolism in bacteria. Further, we show c-di-GMP binding is required for GlgX activity. We describe structures of apo and c-di-GMP-bound GlgX and, strikingly, their comparison shows c-di-GMP induces long-range conformational changes, reorganizing the catalytic pocket to an active state. Glycogen is an important glucose storage compound that enables animals to cope with starvation and stress. Our in vivo studies reveal the important biological role of GlgX in Streptomyces glucose availability control. Overall, we identify a function of c-di-GMP in controlling energy storage metabolism in bacteria, which is widespread in Actinobacteria

    Cyclic di-adenosine monophosphate metabolism and functions in Streptomyces venezuelae

    Get PDF
    Lebewesen nutzen nukleotid-basierte sekundäre Botenstoffe um extra- und intrazelluläre Signale zur Induktion einer entsprechenden Zellantwort weiterzuleiten. Das zyklische Dinukleotid c-di-AMP steuert verschiedene physiologische Prozesse und ist für viele Bakterien unter bestimmten Bedingungen essentiell. Dieses Signalmolekül muss präzise reguliert werden, da seine Akkumulation oft toxisch ist. Diadenylatzyklasen mit einer DAC-Domäne synthetisieren c-di-AMP, welches von Phosphodiesterasen (PDE) mit DHH/DHHA1- oder HD-Domänen abgebaut wird. Streptomyceten sind im Boden lebende, Gram-positive Actinobakterien mit einem komplexen Lebenszyklus, während welchem sie vielzählige sekundäre Metabolite, inklusive Antibiotika, produzieren. Die Regulierung des zellulären c-di-AMP und seine Bedeutung in der Streptomyceten-Biologie waren zu Beginn dieser Studie weitgehend unbekannt. Zur c-di-AMP-Synthese nutzen Streptomyces die DAC DisA, besitzen aber keine der typischen PDEs sowie die meisten der bekannten c-di-AMP-bindenden Effektoren. Diese Arbeit zeigt, dass DisA die wichtigste c-di-AMP-Synthetase in Streptomyces venezuelae ist. AtaC wurde als eine PDE identifiziert, welche eine neue Klasse von c-di-AMP PDEs begründet. Während eine ataC-Deletion zu Störungen in Differenzierung und Wachstum in S. Venezuelae führt, führt die Inaktivierung von disA zur Sensitivität gegenüber erhöhten Konzentrationen von monovalenten Kationen im Medium. CpeA und CpeD wurden als erste c-di-AMP-bindende Proteine im Streptomyces Signalnetzwerk charakterisiert. Die entsprechenden Gene sind in Operons mit putativen Kation/Proton-Antiportern cpeB bzw. cpeE kodiert und die jeweiligen Genprodukte interagieren c-di-AMP-abhängig in vivo. Obwohl Deletion von cpe und Überexpression von cpeABC in S. venezuelae keine Phänotypen zeigten, verbesserte die CpeABC-Expression in Escherichia coli das Wachstum in Kalium-supplementierten Medien, was auf eine Funktion von cpe in der Regulation von Kalium hindeutet.Nucleotide second messengers are used by all forms of life to transduce extra and intracellular signals and translate them into a physiological cell response. The cyclic dinucleotide c-di-AMP is a signaling molecule involved in diverse functions in bacterial physiology and is essential for many bacteria under certain growth conditions. However, this second messenger has to be tightly regulated since increased levels of c-di-AMP can be toxic. In many bacteria diadenylate cyclases with a conserved DAC domain synthesize c-di-AMP and phosphodiesterases (PDEs) with a DHH/DHHA1 or HD domain degrade it. Streptomyces spp. are soil-inhabiting gram-positive Actinobacteria characterized by a sophisticated developmental life cycle during which they produce various secondary metabolites, including antibiotics. The regulation and role of c-di-AMP is not well understood in Streptomyces biology. For c-di-AMP synthesis, streptomycetes utilize the DAC DisA but do not encode any canonical PDE and most of the known effector proteins for c-di-AMP signal transduction are absent. In this work, I demonstrated that DisA is the primary c-di-AMP synthetase in Streptomyces venezuelae and characterized AtaC as the founding member of a novel class of c-di-AMP-specific PDEs. In S. venezuelae, deletion of ataC interferes with development and growth, whereas disA inactivation affects bacterial survival under high ion osmotic stress conditions. Further, I identified CpeA and CpeD as the first c-di-AMP-binding proteins in Streptomyces. The respective genes are encoded in operons with the predicted cation/proton antiporters cpeB and cpeE, respectively, and the gene products interact in vivo in a c-di-AMP-dependent manner. Although neither cpe deletion nor overexpression of cpeABC produced a phenotype in S. venezuelae, expression of cpeABC in Escherichia coli improved growth in liquid media supplemented with potassium, suggesting that Cpe transporters are involved in potassium homeostasis

    c-di-AMP hydrolysis by the phosphodiesterase AtaC promotes differentiation of multicellular bacteria

    No full text
    Antibiotic-producing Streptomyces use the diadenylate cyclase DisA to synthesize the nucleotide second messenger c-di-AMP, but the mechanism for terminating c-di-AMP signaling and the proteins that bind the molecule to effect signal transduction are unknown. Here, we identify the AtaC protein as a c-di-AMP-specific phosphodiesterase that is also conserved in pathogens such as Streptococcus pneumoniae and Mycobacterium tuberculosis. AtaC is monomeric in solution and binds Mn2+^{2+} to specifically hydrolyze c-di-AMP to AMP via the intermediate 5′-pApA. As an effector of c-di-AMP signaling, we characterize the RCK_C domain protein CpeA. c-di-AMP promotes interaction between CpeA and the predicted cation/proton antiporter, CpeB, linking c-di-AMP signaling to ion homeostasis in Actinobacteria. Hydrolysis of c-di-AMP is critical for normal growth and differentiation in Streptomyces, connecting ionic stress to development. Thus, we present the discovery of two components of c-di-AMP signaling in bacteria and show that precise control of this second messenger is essential for ion balance and coordinated development in Streptomyces

    CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System.

    No full text
    Background & aimsPeptic ulcer disease and gastric cancer are caused most often by Helicobacter pylori strains that harbor the cag pathogenicity island, which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host cells. cagY is an essential gene in the T4SS and has an unusual DNA repeat structure that predicts in-frame insertions and deletions. These cagY recombination events typically lead to a reduction in T4SS function in mouse and primate models. We examined the role of the immune response in cagY-dependent modulation of T4SS function.MethodsH pylori T4SS function was assessed by measuring CagA translocation and the capacity to induce interleukin (IL)8 in gastric epithelial cells. cagY recombination was determined by changes in polymerase chain reaction restriction fragment-length polymorphisms. T4SS function and cagY in H pylori from C57BL/6 mice were compared with strains recovered from Rag1-/- mice, T- and B-cell-deficient mice, mice with deletion of the interferon gamma receptor (IFNGR) or IL10, and Rag1-/- mice that received adoptive transfer of control or Ifng-/- CD4+ T cells. To assess relevance to human beings, T4SS function and cagY recombination were assessed in strains obtained sequentially from a patient after 7.4 years of infection.ResultsH pylori infection of T-cell-deficient and Ifngr1-/- mice, and transfer of CD4+ T cells to Rag1-/- mice, showed that cagY-mediated loss of T4SS function requires a T-helper 1-mediated immune response. Loss of T4SS function and cagY recombination were more pronounced in Il10-/- mice, and in control mice infected with H pylori that expressed a more inflammatory form of cagY. Complementation analysis of H pylori strains isolated from a patient over time showed changes in T4SS function that were dependent on recombination in cagY.ConclusionsAnalysis of H pylori strains from mice and from a chronically infected patient showed that CagY functions as an immune-sensitive regulator of T4SS function. We propose that this is a bacterial adaptation to maximize persistent infection and transmission to a new host under conditions of a robust inflammatory response

    CagY Is an Immune-Sensitive Regulator of the Helicobacter pylori Type IV Secretion System

    No full text
    BACKGROUND & AIMS: Peptic ulcer disease and gastric cancer are most often caused by Helicobacter pylori strains that harbor the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host cells. cagY is an essential gene in the T4SS and has an unusual DNA repeat structure that predicts in-frame insertions and deletions. These cagY recombination events typically lead to a reduction in T4SS function in mouse and primate models. We examined the role of the immune response in cagY-dependent modulation of T4SS function. METHODS: H pylori T4SS function was assessed by measuring CagA translocation and the capacity to induce interleukin-8 (IL8) in gastric epithelial cells. cagY recombination was determined by changes in PCR restriction fragment-length polymorphisms. T4SS function and cagY in H pylori from C57BL/6 mice were compared to strains recovered from Rag1−/− mice, T and B cell deficient mice, mice with deletion of IFNGR or IL10, and Rag1−/− mice that received adoptive transfer of control or Ifng−/− CD4+ T cells. To assess relevance to humans, T4SS function and cagY recombination were assessed in strains obtained sequentially from a patient after 7.4 years of infection. RESULTS: H pylori infection of T-cell deficient and Ifngr1−/− mice, and transfer of CD4+ T cells to Rag1−/− mice, demonstrated that cagY-mediated loss of T4SS function requires a T-helper 1-mediated immune response. Loss of T4SS function and cagY recombination were more pronounced in Il10−/− mice, and in control mice infected with H pylori that expressed a more inflammatory form of cagY. Complementation analysis of H pylori strains isolated from a patient over time demonstrated changes in T4SS function that were dependent on recombination in cagY. CONCLUSIONS: Analysis of H pylori strains from mice and from a chronically infected patient showed that CagY functions as an immune-sensitive regulator of T4SS function. We propose that this is a bacterial adaptation to maximize persistent infection and transmission to a new host under conditions of a robust inflammatory response
    corecore