782 research outputs found

    Simulation of gauge transformations on systems of ultracold atoms

    Full text link
    We show that gauge transformations can be simulated on systems of ultracold atoms. We discuss observables that are invariant under these gauge transformations and compute them using a tensor network ansatz that escapes the phase problem. We determine that the Mott-insulator-to-superfluid critical point is monotonically shifted as the induced magnetic flux increases. This result is stable against the inclusion of a small amount of entanglement in the variational ansatz.Comment: 14 pages, 6 figure

    Thermal Effects in Low-Temperature QED

    Get PDF
    QED is studied at low temperature (Tâ‰ȘmT\ll m, where mm is the electron mass) and zero chemical potential. By integrating out the electron field and the nonzero bosonic Matsubara modes, we construct an effective three-dimensional field theory that is valid at distances R≫1/TR\gg1/T. As applications, we reproduce the ring-improved free energy and calculate the Debye mass to order e5e^5.Comment: 20 pages, 4 figures, revte

    Controle, exigĂȘncias, apoio social no trabalho e efeitos na saĂșde de trabalhadores adolescentes

    Get PDF
    OBJETIVO: Avaliar as dimensĂ”es fĂ­sicas e psicolĂłgicas do trabalho de adolescentes (demanda de trabalho, controle no trabalho e apoio social e ambiental), relacionando-os a relatos de: dores no corpo, acidentes de trabalho, duração de sono e duração diĂĄria da jornada de trabalho. MÉTODOS: Participaram do estudo 354 estudantes do perĂ­odo noturno de escola pĂșblica no MunicĂ­pio de SĂŁo Paulo, entre abril e maio de 2001. Esses, responderam a questionĂĄrio sobre condiçÔes de vida, trabalho (escalas Karasek de controle no trabalho) e estado de saĂșde. Foram feitas anĂĄlises de regressĂŁo logĂ­stica mĂșltipla a fim de determinar a relação entre variĂĄveis. RESULTADOS: As exigĂȘncias psicolĂłgicas mostraram-se associadas aos relatos de dores no corpo (OR=3,3), maiores riscos de ocorrĂȘncia de acidentes de trabalho (OR=3,0) e redução da duração do sono durante os dias de semana (segunda a quinta-feira) (pOBJECTIVE: To evaluate physical and psychological dimensions of adolescent labor (such as job demands, job control, and social support in the work environment), and their relation to reported body pain, work injuries, sleep duration and daily working hours. METHODS: A total of 354 adolescents attending evening classes at a public school in SĂŁo Paulo, Brazil, answered questionnaires regarding their living and working conditions (Karasek's Job Content Questionnaire, 1998), and their health status. Data collection took place in April and May 2001. Multiple logistic regression analysis was used to determine relations among variables. RESULTS: Psychological job demands were related to body pain (OR=3.3), higher risk of work injuries (OR=3.0) and reduced sleep duration in weekdays (Monday to Thursday) (

    Quantum gases in trimerized kagom\'e lattices

    Get PDF
    We study low temperature properties of atomic gases in trimerized optical kagom\'{e} lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with two fermions per site. This system is shown to be described by a quantum spin 1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits non-standard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous minor corrections with respect to former lanl submissio

    Completeness and consistency of renormalisation group flows

    Get PDF
    We study different renormalisation group flows for scale dependent effective actions, including exact and proper-time renormalisation group flows. These flows have a simple one loop structure. They differ in their dependence on the full field-dependent propagator, which is linear for exact flows. We investigate the inherent approximations of flows with a non-linear dependence on the propagator. We check explicitly that standard perturbation theory is not reproduced. We explain the origin of the discrepancy by providing links to exact flows both in closed expressions and in given approximations. We show that proper-time flows are approximations to Callan-Symanzik flows. Within a background field formalism, we provide a generalised proper-time flow, which is exact. Implications of these findings are discussed.Comment: 33 pages, 15 figures, revtex, typos corrected, to be published in Phys.Rev.

    Entanglement Entropy dynamics in Heisenberg chains

    Full text link
    By means of the time-dependent density matrix renormalization group algorithm we study the zero-temperature dynamics of the Von Neumann entropy of a block of spins in a Heisenberg chain after a sudden quench in the anisotropy parameter. In the absence of any disorder the block entropy increases linearly with time and then saturates. We analyze the velocity of propagation of the entanglement as a function of the initial and final anisotropies and compare, wherever possible, our results with those obtained by means of Conformal Field Theory. In the disordered case we find a slower (logarithmic) evolution which may signals the onset of entanglement localization.Comment: 15 pages, 9 figure

    Reconstruction of the spin state

    Get PDF
    System of 1/2 spin particles is observed repeatedly using Stern-Gerlach apparatuses with rotated orientations. Synthesis of such non-commuting observables is analyzed using maximum likelihood estimation as an example of quantum state reconstruction. Repeated incompatible observations represent a new generalized measurement. This idealized scheme will serve for analysis of future experiments in neutron and quantum optics.Comment: 4 pages, 1 figur

    Fidelity trade-off for finite ensembles of identically prepared qubits

    Full text link
    We calculate the trade-off between the quality of estimating the quantum state of an ensemble of identically prepared qubits and the minimum level of disturbance that has to be introduced by this procedure in quantum mechanics. The trade-off is quantified using two mean fidelities: the operation fidelity which characterizes the average resemblance of the final qubit state to the initial one, and the estimation fidelity describing the quality of the obtained estimate. We analyze properties of quantum operations saturating the achievability bound for the operation fidelity versus the estimation fidelity, which allows us to reduce substantially the complexity of the problem of finding the trade-off curve. The reduced optimization problem has the form of an eigenvalue problem for a set of tridiagonal matrices, and it can be easily solved using standard numerical tools.Comment: 26 pages, REVTeX, 2 figures. Few minor corrections, accepted for publication in Physical Review

    Bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories

    Get PDF
    This paper is a review of the main results obtained in a series of papers involving the present authors and their collaborator J L Cardy over the last 2 years. In our work, we have developed and applied a new approach for the computation of the bi-partite entanglement entropy in massive (1+1)-dimensional quantum field theories. In most of our work we have also considered these theories to be integrable. Our approach combines two main ingredients: the 'replica trick' and form factors for integrable models and more generally for massive quantum field theory. Our basic idea for combining fruitfully these two ingredients is that of the branch-point twist field. By the replica trick, we obtained an alternative way of expressing the entanglement entropy as a function of the correlation functions of branch-point twist fields. On the other hand, a generalization of the form factor program has allowed us to study, and in integrable cases to obtain exact expressions for, form factors of such twist fields. By the usual decomposition of correlation functions in an infinite series involving form factors, we obtained exact results for the infrared behaviours of the bi-partite entanglement entropy, and studied both its infrared and ultraviolet behaviours for different kinds of models: with and without boundaries and backscattering, at and out of integrability

    Optical lattice quantum simulator for QED in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect

    Full text link
    Spontaneous creation of electron-positron pairs out of the vacuum due to a strong electric field is a spectacular manifestation of the relativistic energy-momentum relation for the Dirac fermions. This fundamental prediction of Quantum Electrodynamics (QED) has not yet been confirmed experimentally as the generation of a sufficiently strong electric field extending over a large enough space-time volume still presents a challenge. Surprisingly, distant areas of physics may help us to circumvent this difficulty. In condensed matter and solid state physics (areas commonly considered as low energy physics), one usually deals with quasi-particles instead of real electrons and positrons. Since their mass gap can often be freely tuned, it is much easier to create these light quasi-particles by an analogue of the Sauter-Schwinger effect. This motivates our proposal of a quantum simulator in which excitations of ultra-cold atoms moving in a bichromatic optical lattice represent particles and antiparticles (holes) satisfying a discretized version of the Dirac equation together with fermionic anti-commutation relations. Using the language of second quantization, we are able to construct an analogue of the spontaneous pair creation which can be realized in an (almost) table-top experiment.Comment: 21 pages, 10 figure
    • 

    corecore