3 research outputs found
A river classification scheme to assess macroinvertebrate sensitivity to water abstraction pressures
The concept of environmental flows has been developed to manage human alteration of river flow regimes, as effective management requires an understanding of the ecological consequences of flow alteration. This study explores the concept of macroinvertebrate sensitivity to river flow alteration to establish robust quantitative relationships between biological indicators and hydrological pressures. Existing environmental flow classifications used by the environmental regulator for English rivers were tested using multilevel regression modelling. Results showed a weak relationship between the current abstraction sensitivity classification and macroinvertebrate response to flow pressure. An alternative approach, based on physically‐derived river types, was a better predictor of macroinvertebrate response. Intermediate sized lowland streams displayed the best model fit, while upland rivers exhibited poor model performance. A better understanding of the ecological response to flow variation in different river types could help water resource managers develop improved ecologically appropriate flow regimes, which support the integrity of river ecosystems
Temporal assessment of copper speciation, bioavailability and toxicity in UK freshwaters using chemical equilibrium and biotic ligand models: Implications for compliance with copper environmental quality standards
© 2015 Elsevier B.V.Although significant progress has been made in understanding how environmental factors modify the speciation, bioavailability and toxicity of metals such as copper in aquatic environments, the current methods used to establish water quality standards do not necessarily consider the different geological and geochemical characteristics of a given site and the factors that affect copper fate, bioavailability potential and toxicity. In addition, the temporal variation in the concentration and bioavailable metal fraction is also important in freshwater systems. The work presented in this paper illustrates the temporal and seasonal variability of a range of water quality parameters, and Cu speciation, bioavailability and toxicity at four freshwaters sites in the UK. Rivers Coquet, Cree, Lower Clyde and Eden (Kent) were selected to cover a broad range of different geochemical environments and site characteristics. The monitoring data used covered a period of around six years at almost monthly intervals.Chemical equilibrium modelling was used to study temporal variations in Cu speciation and was combined with acute toxicity modelling to assess Cu bioavailability for two aquatic species, Daphnia magna and Daphnia pulex. The estimated copper bioavailability, toxicity levels and the corresponding ecosystem risks were analysed in relation to key water quality parameters (alkalinity, pH and DOC). Although copper concentrations did not vary much during the sampling period or between the seasons at the different sites; copper bioavailability varied markedly. In addition, through the chronic-Cu BLM-based on the voluntary risk assessment approach, the potential environmental risk in terms of the chronic toxicity was assessed. A much higher likelihood of toxicity effects was found during the cold period at all sites. It is suggested that besides the metal (copper) concentration in the surface water environment, the variability and seasonality of other important water quality parameters should be considered in setting appropriately protective environmental quality standards for metals