106 research outputs found

    Performance of one-body reduced density matrix functionals for the homogeneous electron gas

    Full text link
    The subject of this study is the exchange-correlation-energy functional of reduced density matrix functional theory. Approximations of this functional are tested by applying them to the homogeneous electron gas. We find that two approximations recently proposed by Gritsenko, Pernal, and Baerends, J. Chem. Phys., {\bf 122}, 204102 (2005), yield considerably better correlation energies and momentum distributions than previously known functionals. We introduce modifications to these functionals which, by construction, reproduce the exact correlation energy of the homogeneous electron gas

    Benchmark calculations for reduced density-matrix functional theory

    Full text link
    Reduced density-matrix functional theory (RDMFT) is a promising alternative approach to the problem of electron correlation. Like standard density functional theory, it contains an unknown exchange-correlation functional, for which several approximations have been proposed in the last years. In this article, we benchmark some of these functionals in an extended set of molecules with respect to total and atomization energies. Our results show that the most recent RDMFT functionals give very satisfactory results compared to more involved quantum chemistry and density functional approaches.Comment: 17 pages, 1 figur

    Discontinuity of the chemical potential in reduced-density-matrix-functional theory

    Full text link
    We present a novel method for calculating the fundamental gap. To this end, reduced-density-matrix-functional theory is generalized to fractional particle number. For each fixed particle number, MM, the total energy is minimized with respect to the natural orbitals and their occupation numbers. This leads to a function, EtotME_{\mathrm{tot}}^M, whose derivative with respect to the particle number has a discontinuity identical to the gap. In contrast to density functional theory, the energy minimum is generally not a stationary point of the total-energy functional. Numerical results, presented for alkali atoms, the LiH molecule, the periodic one-dimensional LiH chain, and solid Ne, are in excellent agreement with CI calculations and/or experimental data.Comment: 9 pages, 3 figures, version as publishe

    Open shells in reduced-density-matrix-functional theory

    Full text link
    Reduced-density-matrix-functional theory is applied to open-shell systems. We introduce a spin-restricted formulation by appropriately expressing approximate correlation-energy functionals in terms of spin-dependent occupation numbers and spin-independent natural orbitals. We demonstrate that the additional constraint of total-spin conservation is indispensable for the proper treatment of open-shell systems. The formalism is applied to the first-row open-shell atoms. The obtained ground-state energies are in very good agreement with the exact values as well as other state of the art quantum chemistry calculationsComment: 4 pages, 2 figures, corrected typo

    Reduced Density Matrix Functional for Many-Electron Systems

    Full text link
    Reduced density matrix functional theory for the case of solids is presented and a new exchange correlation functional based on a fractional power of the density matrix is introduced. We show that compared to other functionals, this produces more accurate results for both finite systems. Moreover, it captures the correct band gap behavior for conventional semiconductors as well as strongly correlated Mott insulators, where a gap is obtained in absence of any magnetic ordering.Comment: 4 figs and 1 tabl

    Local reduced-density-matrix-functional theory: Incorporating static correlation effects in Kohn-Sham equations

    Get PDF
    We propose a novel scheme to bring reduced density matrix functional theory (RDMFT) into the realm of density functional theory (DFT) that preserves the accurate density functional description at equilibrium, while incorporating accurately static and left-right correlation effects in molecules and keeping the good computational performance of DFT-based schemes. The key ingredient is to relax the requirement that the local potential is the functional derivative of the energy with respect to the density. Instead, we propose to restrict the search for the approximate natural orbitals within a domain where these orbitals are eigenfunctions of a single-particle hamiltonian with a local effective potential. In this way, fractional natural occupation numbers are accommodated into Kohn-Sham equations allowing for the description of molecular dissociation without breaking spin symmetry. Additionally, our scheme provides a natural way to connect an energy eigenvalue spectrum to the approximate natural orbitals and this spectrum is found to represent accurately the ionization potentials of atoms and small molecules

    Quasi-particle energy spectra in local reduced density matrix functional theory

    Get PDF
    Recently, we introduced [N. N. Lathiotakis, N. Helbig, A. Rubio, and N. I. Gidopoulos, Phys. Rev. A90, 032511 (2014)] local reduced density matrix functional theory (local RDMFT), a theoretical scheme capable of incorporating static correlation effects in Kohn-Sham equations. Here, we apply local RDMFT to molecular systems of relatively large size, as a demonstration of its computational efficiency and its accuracy in predicting single-electron properties from the eigenvalue spectrum of the single-particle Hamiltonian with a local effective potential. We present encouraging results on the photoelectron spectrum of molecular systems and the relative stability of C20 isotopes. In addition, we propose a modelling of the fractional occupancies as functions of the orbital energies that further improves the efficiency of the method useful in applications to large systems and solidsN.N.L. acknowledges financial support from the GSRT action KPHΠIΣ, project “New multifunctional Nanostructured Materials and Devices – POLYNANO” No. 447963, N.H. from a DFG Emmy-Noether grant, and A.R. from the European Research Council Advanced Grant No. ERC-2010-AdG-267374, Spanish Grant No. FIS2010-21282-C02-01, Grupo Consolidado UPV/EHU (IT578-13), and European Commission Project No. CRONOS(280879-2).Peer Reviewe

    A functional of the one-body-reduced density matrix derived from the homogeneous electron gas: Performance for finite systems

    Full text link
    An approximation for the exchange-correlation energy of reduced-density-matrix-functional theory was recently derived from a study of the homogeneous electron gas (N.N. Lathiotakis, N. Helbig, E.K.U. Gross, Phys. Rev. B 75, 195120 (2007)). In the present work, we show how this approximation can be extended appropriately to finite systems, where the Wigner Seitz radius r_s, the parameter characterizing the constant density of the electron gas, needs to be replaced. We apply the functional to a variety of molecules at their equilibrium geometry, and also discuss its performance at the dissociation limit. We demonstrate that, although originally derived from the uniform gas, the approximation performs remarkably well for finite systems.Comment: 5 pages, 2 figuere
    corecore