109 research outputs found

    Frequency Tracking and Parameter Estimation for Robust Quantum State-Estimation

    Full text link
    In this paper we consider the problem of tracking the state of a quantum system via a continuous measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state-estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequencyComment: 6 figures, 13 page

    Informatics Enhanced SNP Microarray Analysis of 30 Miscarriage Samples Compared to Routine Cytogenetics

    Get PDF
    Purpose: The metaphase karyotype is often used as a diagnostic tool in the setting of early miscarriage; however this technique has several limitations. We evaluate a new technique for karyotyping that uses single nucleotide polymorphism microarrays (SNP). This technique was compared in a blinded, prospective fashion, to the traditional metaphase karyotype. Methods: Patients undergoing dilation and curettage for first trimester miscarriage between February and August 2010 were enrolled. Samples of chorionic villi were equally divided and sent for microarray testing in parallel with routine cytogenetic testing. Results: Thirty samples were analyzed, with only four discordant results. Discordant results occurred when the entire genome was duplicated or when a balanced rearrangement was present. Cytogenetic karyotyping took an average of 29 days while microarray-based karytoyping took an average of 12 days. Conclusions: Molecular karyotyping of POC after missed abortion using SNP microarray analysis allows for the ability to detect maternal cell contamination and provides rapid results with good concordance to standard cytogenetic analysis

    Microrheology with optical tweezers: data analysis

    Get PDF
    We present a data analysis procedure that provides the solution to a long-standing issue in microrheology studies, i.e. the evaluation of the fluids' linear viscoelastic properties from the analysis of a finite set of experimental data, describing (for instance) the time-dependent mean-square displacement of suspended probe particles experiencing Brownian fluctuations. We report, for the first time in the literature, the linear viscoelastic response of an optically trapped bead suspended in a Newtonian fluid, over the entire range of experimentally accessible frequencies. The general validity of the proposed method makes it transferable to the majority of microrheology and rheology techniques

    i-Rheo: Measuring the materials' linear viscoelastic properties “in a step”!

    Get PDF
    A new analytical technique for determining a materials' linear viscoelastic properties from a simple step-strain measurement is reported. The technique avoids the need for idealisation of real measurements. The technique involves evaluating the Fourier transforms of raw experimental data describing both the time-dependent stress and strain functions. A comparison with conventional linear oscillatory measurements for a diverse range of complex materials is made and the technique is shown to be superior to existing linear oscillatory measurements in all cases

    Effective Stimuli for Constructing Reliable Neuron Models

    Get PDF
    The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses

    Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis

    Get PDF
    Supported by F. Hoffmann–La Roche

    Modern digital and analog communications systems

    No full text
    This user-friendly and highly readable book presents the basic and intermediate level treatment of modern digital and analog communication systems. The basics of communication systems without using probabilistic concepts are introduced first. With this solid base, the students are ready to master the probabilistic concepts introduced in later chapters. The great strength of the book is in its superb pedagogical style. The book consistenly does an excellent job of explaining difficult concepts clearly, using prose as well as mathematics. Every effort is made to give an intuitive insight-rather than just proofs- as well as heuristic explanations of theoretical results, wherever possible. The clear explanations, the well-chosen examples tp clarify the abstract mathematical results, and excellent illustrations make this text highly informative and easily accessible to an average student. One of the aims in writing this text has been to make learning a pleasant or at least a less intimidating experience for the student by presenting the subject in a clear, understandable, and logically organized manner

    Signal processing and linear systems /

    No full text
    Includes bibliographical references (p. 837-838) and index
    • 

    corecore