179 research outputs found

    Kepler Eclipsing Binary Stars. V. Identification of 31 Eclipsing Binaries in the K2 Engineering Data-set

    Get PDF
    Over 2500 eclipsing binaries were identified and characterized from the ultra-precise photometric data provided by the Kepler space telescope. Kepler is now beginning its second mission, K2, which is proving to again provide ultra-precise photometry for a large sample of eclipsing binary stars. In the 1951 light curves covering 12 days in the K2 engineering data-set, we have identified and determined the ephemerides for 31 eclipsing binaries that demonstrate the capabilities for eclipsing binary science in the upcoming campaigns in K2. Of those, 20 are new discoveries. We describe both manual and automated approaches to harvesting the complete set of eclipsing binaries in the K2 data, provide identifications and details for the full set of eclipsing binaries present in the engineering data-set, and discuss the prospects for application of eclipsing binary searches in the K2 mission.Comment: 12 pages, 2 figures, submitted to PAS

    In situ oligonucleotide synthesis on poly(dimethylsiloxane): a flexible substrate for microarray fabrication

    Get PDF
    In this paper, we demonstrate in situ synthesis of oligonucleotide probes on poly(dimethylsiloxane) (PDMS) microchannels through use of conventional phosphoramidite chemistry. PDMS polymer was moulded into a series of microchannels using standard soft lithography (micro-moulding), with dimensions <100 μm. The surface of the PDMS was derivatized by exposure to ultraviolet/ozone followed by vapour phase deposition of glycidoxypropyltrimethoxysilane and reaction with poly(ethylene glycol) spacer, resulting in a reactive surface for oligonucleotide coupling. High, reproducible yields were achieved for both 6mer and 21mer probes as assessed by hybridization to fluorescent oligonucleotides. Oligonucleotide surface density was comparable with that obtained on glass substrates. These results suggest PDMS as a stable and flexible alternative to glass as a suitable substrate in the fabrication and synthesis of DNA microarrays

    Representation of Time-Varying Stimuli by a Network Exhibiting Oscillations on a Faster Time Scale

    Get PDF
    Sensory processing is associated with gamma frequency oscillations (30–80 Hz) in sensory cortices. This raises the question whether gamma oscillations can be directly involved in the representation of time-varying stimuli, including stimuli whose time scale is longer than a gamma cycle. We are interested in the ability of the system to reliably distinguish different stimuli while being robust to stimulus variations such as uniform time-warp. We address this issue with a dynamical model of spiking neurons and study the response to an asymmetric sawtooth input current over a range of shape parameters. These parameters describe how fast the input current rises and falls in time. Our network consists of inhibitory and excitatory populations that are sufficient for generating oscillations in the gamma range. The oscillations period is about one-third of the stimulus duration. Embedded in this network is a subpopulation of excitatory cells that respond to the sawtooth stimulus and a subpopulation of cells that respond to an onset cue. The intrinsic gamma oscillations generate a temporally sparse code for the external stimuli. In this code, an excitatory cell may fire a single spike during a gamma cycle, depending on its tuning properties and on the temporal structure of the specific input; the identity of the stimulus is coded by the list of excitatory cells that fire during each cycle. We quantify the properties of this representation in a series of simulations and show that the sparseness of the code makes it robust to uniform warping of the time scale. We find that resetting of the oscillation phase at stimulus onset is important for a reliable representation of the stimulus and that there is a tradeoff between the resolution of the neural representation of the stimulus and robustness to time-warp. Author Summary Sensory processing of time-varying stimuli, such as speech, is associated with high-frequency oscillatory cortical activity, the functional significance of which is still unknown. One possibility is that the oscillations are part of a stimulus-encoding mechanism. Here, we investigate a computational model of such a mechanism, a spiking neuronal network whose intrinsic oscillations interact with external input (waveforms simulating short speech segments in a single acoustic frequency band) to encode stimuli that extend over a time interval longer than the oscillation's period. The network implements a temporally sparse encoding, whose robustness to time warping and neuronal noise we quantify. To our knowledge, this study is the first to demonstrate that a biophysically plausible model of oscillations occurring in the processing of auditory input may generate a representation of signals that span multiple oscillation cycles.National Science Foundation (DMS-0211505); Burroughs Wellcome Fund; U.S. Air Force Office of Scientific Researc

    Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)

    Full text link
    The Kepler mission discovered 2842 exoplanet candidates with 2 years of data. We provide updates to the Kepler planet candidate sample based upon 3 years (Q1-Q12) of data. Through a series of tests to exclude false-positives, primarily caused by eclipsing binary stars and instrumental systematics, 855 additional planetary candidates have been discovered, bringing the total number known to 3697. We provide revised transit parameters and accompanying posterior distributions based on a Markov Chain Monte Carlo algorithm for the cumulative catalogue of Kepler Objects of Interest. There are now 130 candidates in the cumulative catalogue that receive less than twice the flux the Earth receives and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen candidates meeting both criteria, roughly doubling the number of candidate Earth analogs. A majority of planetary candidates have a high probability of being bonafide planets, however, there are populations of likely false-positives. We discuss and suggest additional cuts that can be easily applied to the catalogue to produce a set of planetary candidates with good fidelity. The full catalogue is publicly available at the NASA Exoplanet Archive.Comment: Accepted for publication, ApJ

    An in vitro study comparing a peripherally inserted central catheter to a conventional central venous catheter: no difference in static and dynamic pressure transmission

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early goal directed therapy improves survival in patients with septic shock. Central venous pressure (CVP) monitoring is essential to guide adequate resuscitation. Use of peripherally inserted central catheters (PICC) is increasing, but little data exists comparing a PICC to a conventional CVP catheter. We studied the accuracy of a novel PICC to transmit static and dynamic pressures <it>in vitro</it>.</p> <p>Methods</p> <p>We designed a device to generate controlled pressures via a column of water allowing simultaneous measurements from a PICC and a standard triple lumen catheter. Digital transducers were used to obtain all pressure readings. Measurements of static pressures over a physiologic range were recorded using 5Fr and 6Fr dual lumen PICCs. Additionally, random repetitive pressure pulses were applied to the column of water to simulate physiologic intravascular pressure variations. The resultant PICC and control waveforms were recorded simultaneously.</p> <p>Results</p> <p>Six-hundred thirty measurements were made using the 5 Fr and 6 Fr PICCs. The average bias determined by Bland-Altman plot was 0.043 mmHg for 5 Fr PICC and 0.023 mmHg for 6 Fr PICC with a difference range of 1.0 to -1.0. The correlation coefficient for both catheters was 1.0 (p-value < 0.001). Dynamic pressure waveforms plotted simultaneously between PICC and control revealed equal peaks and troughs.</p> <p>Conclusion</p> <p><it>In vitro</it>, no static or dynamic pressure differences were found between the PICC and a conventional CVP catheter. Clinical studies are required to assess whether the novel PICC has bedside equivalence to conventional catheters when measuring central venous pressures.</p

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    KELT-25 b and KELT-26 b: A Hot Jupiter and a Substellar Companion Transiting Young A Stars Observed by TESS

    Get PDF
    We present the discoveries of KELT-25 b (TIC 65412605, TOI-626.01) and KELT-26 b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A stars. The transit signals were initially detected by the KELT survey and subsequently confirmed by Transiting Exoplanet Survey Satellite (TESS) photometry. KELT-25 b is on a 4.40 day orbit around the V = 9.66 star CD-24 5016 (Teff=8280-180+440 K, M ∗ = 2.18-0.11+0.12 M o˙), while KELT-26 b is on a 3.34 day orbit around the V = 9.95 star HD 134004 (Teff = 8640-240+500 K, M ∗ = 1.93-0.16+0.14 M o˙), which is likely an Am star. We have confirmed the substellar nature of both companions through detailed characterization of each system using ground-based and TESS photometry, radial velocity measurements, Doppler tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of R P = 1.64-0.043+0.039 R J and a 3σ upper limit on the companion\u27s mass of ∼64 M J. For KELT-26 b, we infer a planetary mass and radius of M P = 1.41-0.51+0.43MJ and R P = 1.94-0.058+0.060 R J. From Doppler tomographic observations, we find KELT-26 b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the TESS data. KELT-25 b appears to be in a well-aligned, prograde orbit, and the system is likely a member of the cluster Theia 449

    KELT-23Ab: A Hot Jupiter Transiting a Near-solar Twin Close to the TESS and JWST Continuous Viewing Zones

    Get PDF
    We announce the discovery of KELT-23Ab, a hot Jupiter transiting the relatively bright (V = 10.3) star BD+66 911 (TYC 4187-996-1), and characterize the system using follow-up photometry and spectroscopy. A global fit to the system yields host-star properties of K, , , , (cgs), and . KELT-23Ab is a hot Jupiter with a mass of , radius of , and density of g cm-3. Intense insolation flux from the star has likely caused KELT-23Ab to become inflated. The time of inferior conjunction is and the orbital period is days. There is strong evidence that KELT-23A is a member of a long-period binary star system with a less luminous companion, and due to tidal interactions, the planet is likely to spiral into its host within roughly a gigayear. This system has one of the highest positive ecliptic latitudes of all transiting planet hosts known to date, placing it near the Transiting Planet Survey Satellite and James Webb Space Telescope continuous viewing zones. Thus we expect it to be an excellent candidate for long-term monitoring and follow up with these facilities
    corecore