10 research outputs found

    Multifocal myoclonus due to verapamil overdose

    No full text

    Clinically significant changes in genes and variants associated with epilepsy over time: implications for re-analysis

    No full text
    Abstract Despite the significant advances in understanding the genetic architecture of epilepsy, many patients do not receive a molecular diagnosis after genomic testing. Re-analysing existing genomic data has emerged as a potent method to increase diagnostic yields—providing the benefits of genomic-enabled medicine to more individuals afflicted with a range of different conditions. The primary drivers for these new diagnoses are the discovery of novel gene-disease and variants-disease relationships; however, most decisions to trigger re-analysis are based on the passage of time rather than the accumulation of new knowledge. To explore how our understanding of a specific condition changes and how this impacts re-analysis of genomic data from epilepsy patients, we developed Vigelint. This approach combines the information from PanelApp and ClinVar to characterise how the clinically relevant genes and causative variants available to laboratories change over time, and this approach to five clinical-grade epilepsy panels. Applying the Vigelint pipeline to these panels revealed highly variable patterns in new, clinically relevant knowledge becoming publicly available. This variability indicates that a more dynamic approach to re-analysis may benefit the diagnosis and treatment of epilepsy patients. Moreover, this work suggests that Vigelint can provide empirical data to guide more nuanced, condition-specific approaches to re-analysis

    Deciphering the role of epigenetics in self-limited epilepsy with centrotemporal spikes

    No full text
    Objective: The aetiology of self-limited epilepsy with centro-temporal spikes (SECTS) remains controversial and a strong genetic basis has long been presumed. The discordant monozygotic twin (MZ) model controls for shared genetic and environmental factors, enabling focus on the potential role of the non-shared environment. Methods: DNA methylation data was acquired from DNA extracted from three discordant MZ twin pairs, from both new born blood spots before epilepsy onset, and blood samples taken after epilepsy onset. An epigenome-wide analysis was performed, using the Illumina Infinium EPIC array. Differentially methylated regions (DMR) were identified using the bumphunter package in R. Comparative analyses were undertaken at the two different time points as well as a combined analysis independent of time. Results: Many of the top DMR-associated genes have previously been described in neurodevelopmental disorders. The LYPD8 gene was associated with a top-ranked DMR both at birth and across the two time points. Conclusion: We have demonstrated the novel utility of the longitudinal, discordant MZ twin model, to facilitate a deeper appreciation of the complex neurobiology of SECTS. The genetic architecture of SECTS is complex and is likely to involve an interplay between genes and environment, in part mediated by epigenetics

    Genetics of febrile seizure subtypes and syndromes: a twin study

    No full text
    Purpose: Febrile seizures (FS) are the most common seizure syndrome. A strong genetic component has been well established through family and twin studies; however, such studies have not examined the genetics of different FS types (simple, complex, febrile status epilepticus) and sub-syndromes (true FS, febrile seizures plus (FS+), 'FS with later epilepsy'). Here we used a community-based twin sample to analyze genetic factors within different FS subtypes and FS syndromes

    A Multi-Disciplinary Team Approach to Genomic Testing for Drug-Resistant Epilepsy Patients-The GENIE Study

    No full text
    Background. The genomic era has led to enormous progress in clinical care and a multi-disciplinary team (MDT) approach is imperative for integration of genomics into epilepsy patient care. Methods. The MDT approach involved patient selection, genomic testing choice, variant discussions and return of results. Genomics analysis included cytogenomic testing and whole exome sequencing (WES). Neurologist surveys were undertaken at baseline and after genomic testing to determine if genomic diagnoses would alter their management, and if there was a change in confidence in genomic testing and neurologist perceptions of the MDT approach. Results. The total diagnostic yield from all genomic testing was 17% (11/66), with four diagnoses from cytogenomic analyses. All chromosomal microarray (CMA) diagnoses were in patients seen by adult neurologists. Diagnostic yield for WES was 11% (7/62). The most common gene with pathogenic variants was DCX, reported in three patients, of which two were mosaic. The genomic diagnosis impacted management in 82% (9/11). There was increased confidence with integrating genomics into clinical care (Pearson chi square = 83, p = 0.004) and qualitative comments were highly supportive of the MDT approach. Conclusions. We demonstrated diagnostic yield from genomic testing, and the impact on management in a cohort with drug-resistant epilepsy. The MDT approach increased confidence in genomic testing and neurologists valued the input from this approach. The utility of CMA was demonstrated in epilepsy patients seen by adult neurologists as was the importance of considering mosaicism for previously undiagnosed patients.</p

    Genetic epilepsy with febrile seizures plus: refining the spectrum

    Full text link
    Objective: Following our original description of generalized epilepsy with febrile seizures plus (GEFS1) in 1997, we analyze the phenotypic spectrum in 409 affected individuals in 60 families (31 new families) and expand the GEFS1 spectrum. Methods: We performed detailed electroclinical phenotyping on all available affected family members. Genetic analysis of known GEFS1 genes was carried out where possible. We compared our phenotypic and genetic data to those published in the literature over the last 19 years. Results: We identified new phenotypes within the GEFS1 spectrum: focal seizures without preceding febrile seizures (16/409 [4%]), classic genetic generalized epilepsies (22/409 [5%]), and afebrile generalized tonic-clonic seizures (9/409 [2%]). Febrile seizures remains the most frequent phenotype in GEFS1 (178/409 [44%]), followed by febrile seizures plus (111/409 [27%]). One third (50/163 [31%]) of GEFS1 families tested have a pathogenic variant in a known GEFS1 gene. Conclusion: As 37/409 (9%) affected individuals have focal epilepsies, we suggest that GEFS1 be renamed genetic epilepsy with febrile seizures plus rather than generalized epilepsy with febrile seizures plus. The phenotypic overlap between GEFS1 and the classic generalized epilepsies is considerably greater than first thought. The clinical and molecular data suggest that the 2 major groups of generalized epilepsies share genetic determinants.National Health and Medical Research Council of Australia [628952, 1091593, 466671, 1006110, 1104831, 1032603, 1063799]SCI(E)ARTICLE121210-12198

    Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis

    Get PDF
    Action myoclonus-renal failure syndrome (AMRF) is an autosomal-recessive disorder with the remarkable combination of focal glomerulosclerosis, frequently with glomerular collapse, and progressive myoclonus epilepsy associated with storage material in the brain. Here, we employed a novel combination of molecular strategies to find the responsible gene and show its effects in an animal model. Utilizing only three unrelated affected individuals and their relatives, we used homozygosity mapping with single-nucleotide polymorphism chips to localize AMRF. We then used microarray-expression analysis to prioritize candidates prior to sequencing. The disorder was mapped to 4q13-21, and microarray-expression analysis identified SCARB2/Limp2, which encodes a lysosomal-membrane protein, as the likely candidate. Mutations in SCARB2/Limp2 were found in all three families used for mapping and subsequently confirmed in two other unrelated AMRF families. The mutations were associated with lack of SCARB2 protein. Reanalysis of an existing Limp2 knockout mouse showed intracellular inclusions in cerebral and cerebellar cortex, and the kidneys showed subtle glomerular changes. This study highlights that recessive genes can be identified with a very small number of subjects. The ancestral lysosomal-membrane protein SCARB2/LIMP-2 is responsible for AMRF. The heterogeneous pathology in the kidney and brain suggests that SCARB2/Limp2 has pleiotropic effects that may be relevant to understanding the pathogenesis of other forms of glomerulosclerosis or collapse and myoclonic epilepsies.Samuel F. Berkovic, Leanne M. Dibbens, Alicia Oshlack, Jeremy D. Silver, Marina Katerelos, Danya F. Vears, Renate Lüllmann-Rauch, Judith Blanz, Ke Wei Zhang, Jim Stankovich, Renate M. Kalnins, John P. Dowling, Eva Andermann, Frederick Andermann, Enrico Faldini, Rudi D’Hooge, Lata Vadlamudi, Richard A. Macdonell, Bree L. Hodgson, Marta A. Bayly, Judy Savige, John C. Mulley, Gordon K. Smyth, David A. Power, Paul Saftig, and Melanie Bahl
    corecore