4 research outputs found

    Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data

    Get PDF
    One of the most common problems in wind resource assessment is that measured data are not always available at the site of interest. That is why, in several studies, reanalysis data have been used as an alternative, which, in some cases, have been validated by measured data. Mexico is no exception, since there are not many measurement towers in the country that provide valid records throughout the country. In view of the above, in this study a comparison was made between the measurements observed in six anemometric towers, located in different locations in the United Mexican States; data from the MERRA-2 and ERA-5 reanalysis; and data from the generalized wind climates (GWC), available in the Global Wind Atlas. The study was conducted at 80 m, which is the highest height at which data were recorded on the measurement towers at each site. In the case of the MERRA-2 and ERA-5 data, extrapolation of the data series to 80 m was required. In the case of the towers, a comparison of the two data sets measured at 80 m and the height at which two anemometers were available, was performed. This analysis was supported by Windographer version 4 software designed by the company UL solutions, from which *.tab files were exported at 80 m, which were then imported from the WAsP 10.0 program to perform the microscale modeling. The comparison variable was the mean power density, for which the relative deviations between the measured values and those obtained from the reanalysis data and the GWCs were determined. For a better interpretation of the relative errors calculated, an analysis of the orographic characteristics of all the sites was performed using the roughness index (RIX). The results obtained showed that the behavior of the reanalysis and the GWC data was not homogeneous in the sites studied; therefore, an adequate relationship between the magnitudes of the ΔRIX and the relative deviations was not observed, especially for the ERA5 and GWC. The ERA5 data were the furthest from the measured data, with relative deviations greater than 50% at five of the six sites; however, the MERRA-2 and GWC data were the closest to the measured data. The MERRA-2 data showed deviations of less than 11%, except at the La Venta site, where it was 29.5%—a site where the GWC also had a high deviation of 139.4%. The latter is attributable to the effects caused by the nearby wind farms on the wind flow measured by the La Venta station. In general, the MERRA-2 data are an alternative to performing a pre-analysis of the wind resource in Mexico

    Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria

    Get PDF
    Mexico has more than 40 years of researching, investing, and obtaining electric power through wind energy. Within the country, there are highly windy areas, such as the Isthmus of Tehuantepec or the state of Tamaulipas, and there are about 2500 MW installed and 70,000 MW tested, all onshore. There are still no offshore wind farms in Mexico, despite having two main coasts, the East and the West, with the Gulf of Mexico and the Pacific Ocean, respectively. Although the Mexican coastal states of the Gulf of Mexico are Tamaulipas, Veracruz, Tabasco, Campeche, and Yucatán, this work focuses on the study and feasibility of offshore wind energy use on the coasts of the states of Tabasco, Campeche, and Yucatán. This is because of the availability of data in that region; however, sustainability criteria that can be used in other regions are also presented. MERRA-2 and ERA5 data were used employing WAsP and Windographer software. It was found that the capacity factor in the area of Tabasco, Campeche, and Yucatán is 32%, 37%, and 46%. It can be noted that, in the WF100% scenario, each of the wind farms could contribute more than 35% of the region’s electricity consumption; those of Campeche and Yucatán stand out with contributions of more than 70%

    Dimensioning Optimization of the Permanent Magnet Synchronous Generator for Direct Drive Wind Turbines

    Get PDF
    In the present work, a methodology that allows optimizing the permanent magnet synchronous generator (PMSG) design by establishing limit values of magnet radius and length that maximize efficiency for the nominal parameters of the wind turbine is developed. The methodology consists of two fundamental models. One model calculates the generator parameters from the radius of the magnet base, and the other optimization model determines two optimum generators according to the optimization criteria of maximum efficiency and maximum efficiency with minimum weight starting from the axial length and the radius of the magnet base. For the optimization, the numerical method of the golden section was used. The model was validated from a 10 kW PMSG and the results of two optimum generators are presented according to the optimization criteria. In addition, when the obtained results are compared with the reference electric generator, an increase in efficiency of 1.15% and 0.81% and a reduction in weight of 30.79% and 39.15% of the optimized generators are obtained for maximum efficiency and minimum weight, respectively. Intermediate options between the maximum efficiency generator and the minimum weight generator allows for the selection of the optimum dimensioning for the electric generator as a function of the parameters from the wind turbine design
    corecore