58 research outputs found

    Gene by Environment interaction and metabolic-associated fatty liver disease in Mexican American patients with depression

    Get PDF
    Knowledge of genetic and environmental (G x E) interaction effects on metabolic-associated fatty liver disease (MAFLD) is limited. The purpose of this study was to examine the impact of G x E interaction effects on MAFLD in Mexican Americans in the Rio Grande Valley (RGV). The environment examined was depression as measured by the Beck Depression Inventory-II (BDI-II). We examined potential G x E interaction in the phenotypic expression of MAFLD, including hepatic steatosis and hepatic fibrosis, using variance component models and likelihood-based statistical inference. Significant G x E interactions were identified for hepatic fibrosis x BDI-II. These findings provide evidence that genetic factors interact with depression to influence expression of hepatic fibrosis. A better understanding of these genetic interactions are necessary to develop strategies and interventions to reduce the bi-directional relationship of hepatic fibrosis and depression

    Non-alcoholic Fatty Liver Disease and Depression: Evidence for Genotype × Environment Interaction in Mexican Americans

    Get PDF
    This study examines the impact of G × E interaction effects on non-alcoholic fatty liver disease (NAFLD) among Mexican Americans in the Rio Grande Valley (RGV) of South Texas. We examined potential G × E interaction using variance components models and likelihood-based statistical inference in the phenotypic expression of NAFLD, including hepatic steatosis and hepatic fibrosis (identified using vibration controlled transient elastography and controlled attenuation parameter measured by the FibroScan Device). We screened for depression using the Beck Depression Inventory-II (BDI-II). We identified significant G × E interactions for hepatic fibrosis × BDI-II. These findings provide evidence that genetic factors interact with depression to influence the expression of hepatic fibrosis

    Fine mapping and identification of serum urate loci in American Indians: The Strong Heart Family Study

    Get PDF
    While studies have reported genetic loci affecting serum urate (SU) concentrations, few studies have been conducted in minority populations. Our objective for this study was to identify genetic loci regulating SU in a multigenerational family-based cohort of American Indians, the Strong Heart Family Study (SHFS). We genotyped 162,718 single nucleotide polymorphisms (SNPs) in 2000 SHFS participants using an Illumina MetaboChip array. A genome-wide association analysis of SU was conducted using measured genotype analysis approach accounting for kinships in SOLAR, and meta-analysis in METAL. Our results showed strong association of SU with rs4481233, rs9998811, rs7696092 and rs13145758 (minor allele frequency (MAF) = 25–44%; P \u3c 3 × 10−14) of solute carrier family 2, member 9 (SLC2A9) and rs41481455, rs2231142 and rs1481012 (MAF = 29%; p \u3c 3 × 10−9) of ATP-binding cassette protein, subfamily G, member 2 (ABCG2). Carriers of G alleles of rs9998811, rs4148155 and rs1481012 and A alleles of rs4481233, rs7696092 and rs13145758 and rs2231142 had lower SU concentrations as compared to non-carriers. Genetic analysis of SU conditional on significant SLC2A9 and ABCG2 SNPs revealed new loci, nucleobindin 1 (NUCB1) and neuronal PAS domain protein 4 (NPAS4) (p \u3c6× 10−6). To identify American Indian-specific SNPs, we conducted targeted sequencing of key regions of SLC2A9. A total of 233 SNPs were identified of which 89 were strongly associated with SU (p \u3c 7.1 × 10−10) and 117 were American Indian specific. Analysis of key SNPs in cohorts of Mexican-mestizos, European, Indian and East Asian ancestries showed replication of common SNPs, including our lead SNPs. Our results demonstrate the association of SU with uric acid transporters in a minority population of American Indians and potential novel associations of SU with neuronal-related genes which warrant further investigation

    Gene-by-Environment Interaction in Non-Alcoholic Fatty Liver Disease and Depression: The Role of Hepatic Transaminases

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD) encompasses a range of liver conditions, from benign fatty accumulation to severe fibrosis. The global prevalence of NAFLD has risen to 25-30%, with variations across ethnic groups. NAFLD may advance to hepatocellular carcinoma, increases cardiovascular risk, is associated with chronic kidney disease, and is an independent metabolic disease risk factor. Assessment methods for liver health include liver biopsy, magnetic resonance imaging, ultrasound, and vibration-controlled transient elastography (VCTE by FibroScan). Hepatic transaminases are cost-effective and minimally invasive liver health assessment methods options. This study focuses on the interaction between genetic factors underlying the traits (hepatic transaminases and the FibroScan results) on the one hand and the environment (depression) on the other. We examined 525 individuals at risk for metabolic disorders. We utilized variance components models and likelihood-based statistical inference to examine potential GxE interactions in markers of NAFLD, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and the AST/ALT ratio, and Vibration-Controlled Transient Elastography (VCTE by FibroScan). We calculated the Fibroscan-AST (FAST) score (a score that identifies the risk of progressive non-alcoholic steatohepatitis (NASH) and screened for depression using the Beck Depression Inventory-II (BDI-II). We identified significant G x E interactions for AST/ALT ratio x BDI-II, but not AST, ALT, or the FAST score. Our findings support that genetic factors play a role in hepatic transaminases, especially the AST/ALT ratio, with depression influencing this relationship. These insights contribute to understanding the complex interplay of genetics, environment, and liver health, potentially guiding future personalized interventions

    Genetic variants and physical activity interact to affect bone density in Hispanic children

    Get PDF
    Background: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. Methods: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. Results: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p \u3c 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5 ) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively). Discussion: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed

    Association of Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The Strong Heart Family Study (SHFS)

    Get PDF
    Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p \u3c 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24

    Genetic analysis localizes a novel locus on chromosome 4q for the glaucoma endophenotype, cup-to-disc ratio: The Jiri Eye Study

    Get PDF
    Purpose: Glaucoma is a heterogeneous disease influenced by genetic risk factors. However, not all genetic risk factors have been identified. The aim of this project is to localize genetic factors influencing known glaucoma endophenotypes: intraocular pressure (IOP), central corneal thickness (CCT), and vertical cup-to-disc ratio (VCDR). Methods: This family-based study design utilizes phenotypic and genomic data from a single well-characterized pedigree residing in the Jiri region of Nepal. Measures of IOP, CCT and VCDR were obtained by Goldmann applanation tonometry, OCT, and slit lamp biomicroscopy, respectively. Using a genome-wide genotype data set (~550,000 SNPs), we performed a genome-wide linkage scan for IOP, CCT, and VCDR adopting a quantitative approach in SOLAR. For localized quantitative trait locus (QTL) signals, we screened all SNPs within the 1-LOD (95% confidence) interval using the classical measured genotype approach to association analysis and allowing for non-independence amongst the pedigree members. Results: For this study, phenotypic and genotype data from 1,163 (55% female) members of the Jirel population were available. The mean age of the sample is 43.8 (SD=15.7) years. IOP (h2=19%, p=6.1×10-5), CCT (h2=57%, p=1.6×10-26), and VCDR (h2=48%, p=9.7×10-22) were significantly heritable. We localized a significant QTL for VCDR on chromosome 4 (LOD=3.05 at 86.83 Mb). The top association signal within this QTL was for an intronic SNP (rs4148155; p=2.01×10-6, b=0.24) in the ABCG2 (ATP binding cassette subfamily G member 2) gene, which satisfied our QTL-specific Bonferroni-corrected significance criterion (p\u3c6.59×10-5). ABCG2 is a known stem cell marker, which is positively expressed in clonal human trabecular meshwork stem cells. Another positional candidate gene of note is SCD5 (Stearoyl-CoA desaturase 5), which is shown to suppress neurite outgrowth, a marker of neuronal differentiation. SCD5 is of significant interest given that expression of myocilin (MYOC) also inhibits neurite outgrowth. Conclusions: To our knowledge, the VCDR QTL on chromosome 4 is a novel locus and does not overlap with other glaucoma endophenotypes or glaucoma disease status. These results highlight the importance of continued evaluation of genetic factors influencing glaucoma endophenotypes in under-studied populations, such as the Jirels, as new information may be elucidated

    Genetics of kidney disease and related cardiometabolic phenotypes in Zuni Indians: the Zuni Kidney Project

    Get PDF
    The objective of this study is to identify genetic factors associated with chronic kidney disease (CKD) and related cardiometabolic phenotypes among participants of the Genetics of Kidney Disease in Zuni Indians study. The study was conducted as a community-based participatory research project in the Zuni Indians, a small endogamous tribe in rural New Mexico. We recruited 998 members from 28 extended multigenerational families, ascertained through probands with CKD who had at least one sibling with CKD. We used the Illumina Infinium Human1M-Duo version 3.0 BeadChips to type 1.1 million single nucleotide polymorphisms (SNPs). Prevalence estimates for CKD, hyperuricemia, diabetes, and hypertension were 24%, 30%, 17% and 34%, respectively. We found a significant (p \u3c 1.58 × 10-7) association for a SNP in a novel gene for serum creatinine (PTPLAD2). We replicated significant associations for genes with serum uric acid (SLC2A9), triglyceride levels (APOA1, BUD13, ZNF259), and total cholesterol (PVRL2). We found novel suggestive associations (p \u3c 1.58 × 10-6) for SNPs in genes with systolic (OLFML2B), and diastolic blood pressure (NFIA). We identified a series of genes associated with CKD and related cardiometabolic phenotypes among Zuni Indians, a population with a high prevalence of kidney disease. Illuminating genetic variations that modulate the risk for these disorders may ultimately provide a basis for novel preventive strategies and therapeutic interventions

    Genetic Variants Related to Cardiometabolic Traits Are Associated to B Cell Function, Insulin Resistance, and Diabetes Among AmeriCan Indians: The Strong Heart Family Study

    Get PDF
    Background: Genetic research may inform underlying mechanisms for disparities in the burden of type 2 diabetes mellitus among American Indians. Our objective was to assess the association of genetic variants in cardiometabolic candidate genes with B cell dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus in the Strong Heart Family Study (SHFS). Methods and Results: We examined the association of variants, previously associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip), using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population stratification, and familial relatedness. Center-specific estimates were combined using fixed effect meta-analyses. We used Bonferroni correction to account for multiple testing (P \u3c 4.13 × 10−7). We also assessed the association between variants in candidate diabetes genes with these metabolic traits. We explored the top SNPs in an independent, replication sample from Southwestern Arizona. We identified significant associations with cHOMA-B for common variants at 26 loci of which 8 were novel (PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most significant variant association with cHOMA-B was observed on chromosome 5 for an intergenic variant near PARP8 (rs2961831, P = 6.39 × 10−9). In the replication study, we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate diabetes genes (especially GCK and KCNQ1) were also nominally associated with HOMA-IR and cHOMA-B. Conclusion: We identified variants at novel loci and confirmed those at known candidate diabetes loci associations for cHOMA-B. This study also provided evidence for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among American Indians. Further studies are needed to account for the high heritability of diabetes among the American Indian participants of the SHFS cohort

    Fatty acids linked to cardiovascular mortality are associated with risk factors

    Get PDF
    Background. Although saturated fatty acids (FAs) have been linked to cardiovascular mortality, it is not clear whether this outcome is attributable solely to their effects on low-density lipoprotein cholesterol (LDL-C) or whether other risk factors are also associated with FAs. The Western Alaskan Native population, with its rapidly changing lifestyles, shift in diet from unsaturated to saturated fatty acids and dramatic increase in cardiovascular disease (CVD), presents an opportunity to elucidate any associations between specific FAs and known CVD risk factors. Objective. We tested the hypothesis that the specific FAs previously identified as related to CVD mortality are also associated with individual CVD risk factors. Methods. In this community-based, cross-sectional study, relative proportions of FAs in plasma and red blood cell membranes were compared with CVD risk factors in a sample of 758 men and women aged ]35 years. Linear regression analyses were used to analyze relations between specific FAs and CVD risk factors (LDL-C, high-density lipoprotein cholesterol, triglycerides, C-reactive protein, systolic blood pressure, diastolic blood pressure, heart rate, body mass index, fasting glucose and fasting insulin, 2-hour glucose and 2-hour insulin). Results. The specific saturated FAs previously identified as related to CVD mortality, the palmitic and myristic acids, were adversely associated with most CVD risk factors, whereas unsaturated linoleic acid (18:2n-6) and the marine n-3 FAs were not associated or were beneficially associated with CVD risk factors. Conclusions. The results suggest that CVD risk factors are more extensively affected by individual FAs than hitherto recognized, and that risk for CVD,MI and stroke can be reduced by reducing the intake of palmitate, myristic acid and simple carbohydrates and improved by greater intake of linoleic acid and marine n-3 FAs
    • …
    corecore