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Non-alcoholic Fatty Liver Disease
and Depression: Evidence for
Genotype × Environment Interaction
in Mexican Americans
Eron Grant Manusov1,2* , Vincent P. Diego1,2, Khalid Sheikh3, Sandra Laston1,2,
John Blangero1,2 and Sarah Williams-Blangero1,2
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This study examines the impact of G × E interaction effects on non-alcoholic fatty liver
disease (NAFLD) among Mexican Americans in the Rio Grande Valley (RGV) of South
Texas. We examined potential G × E interaction using variance components models
and likelihood-based statistical inference in the phenotypic expression of NAFLD,
including hepatic steatosis and hepatic fibrosis (identified using vibration controlled
transient elastography and controlled attenuation parameter measured by the FibroScan
Device). We screened for depression using the Beck Depression Inventory-II (BDI-
II). We identified significant G × E interactions for hepatic fibrosis × BDI-II. These
findings provide evidence that genetic factors interact with depression to influence the
expression of hepatic fibrosis.

Keywords: G × E, liver disease, Mexican Americans, depression, heritability

INTRODUCTION

The Rio Grande Valley (RGV) of South Texas is one of the poorest regions of the United States
and experiences significant health disparities. The majority (90%) Mexican American population
of the RGV faces disproportionately high rates of obesity (55.5%), diabetes (32.5%), and depression
(19%) (1, 2). The prevalence of non-alcoholic fatty liver disease (NAFLD) has risen to a global
population high of 25–30%, with significant variation among ethnic groups (3–6). The prevalence
of NAFLD in the RGV (40%) mirrors the global NAFLD epidemic. The term NAFLD includes a
phenotypic range of entities that can be histologically separated into a non-alcoholic fatty liver with
the presence of steatosis in 5% of hepatocytes, without signs of hepatocellular injury (hepatocyte
ballooning), and non-alcoholic steatohepatitis (NASH) where there is hepatocellular inflammation
and damage with or without fibrosis (3, 7). NAFLD is a significant health concern that can progress
to hepatocellular carcinoma (6), increases cardiovascular risk, is associated with higher rates of
chronic kidney disease, and is an independent risk factor for system-wide metabolic disease (8, 9).

The pathogenesis of NAFLD results from the accumulation of triglycerides (TGs) in
hepatocytes. The sterol regulatory element-binding protein-1 (STEBP-1), activated by insulin
and the carbohydrate response element-binding protein (Ch REBP), glucose and fructose, and
the peroxisome proliferator active receptor (PPAR) gamma, controls lipogenesis (10–12). As
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hepatocytes are overwhelmed by TG accumulation, there is
a rise in hepatocyte dysfunction due to lipotoxicity, reactive
oxygen species, resultant inflammation, DNA damage, and
consecutive abnormal cell regeneration and apoptosis. Genetic
predisposition, epigenetic changes, anabolic stimuli, adipokine
modification, the gut microbiome, and infection influence these
pathological processes (3).

We can measure liver health by liver biopsy, magnetic
resonance imaging, ultrasound, and vibration-controlled
transient elastography (VCTE by FibroScan) (3, 13). Although
liver biopsy is considered the “gold standard,” VCTE is accurate
and facilitates liver health measurement in community-based
healthcare and research settings (14–17). The presence of NAFLD
is determined based on VCTE results. The FibroScan quantifies
the speed of the shear wave propagated by the ultrasonic wave
through the liver. The controlled attenuation parameter (CAP)
measures liver ultrasonic attenuation, measuring the degree of
steatosis. A CAP of 300 dB/m is an accurate cutoff (PPV 95%
CI) and NPV (95% CI) for diagnosing fatty infiltration. Liver
stiffness measurements (LSMs) are expressed in kilopascals and
accurately measure the level of fibrosis stratified into five groups:
≤8, 8.1–13, 13.1–18, 18.1–23, and >23 kPa.

The presence and severity of NAFLD are associated with
depression (1, 18–23). Depression and negative psychological
factors may inhibit patients from adhering to the necessary
diet and exercise regimen for weight loss and liver health (24–
27). Depression adversely impacts the management of chronic
diseases by its effect on memory, energy, sense of self-efficacy, and
satisfaction with care (20, 28–30). A small study of adolescents
found that metabolic syndrome is associated with reduced
serotonergic brain activity, possibly contributing to mental illness
(31, 32). Recently published information supports the role of
inflammation in both depression and NAFLD, finding that both
illnesses are correlated (1, 20, 22, 26, 33).

This study examines the impact of G × E interaction effects
of NAFLD and depression among Mexican Americans in the
RGV of South Texas. We are interested in the role of genetics
and the environment in our population, specifically, if there is
evidence that genetic factors interact with depression to influence
the expression of hepatic fibrosis.

MATERIALS AND METHODS

The University of Texas Rio Grande Valley IRB approved
the study protocol. All participants provided informed consent
prior to participating in the study. We evaluated 279 Mexican
American participants recruited from the community in an
ongoing genetic study for the presence of obesity, diabetes,
hypertension, hyperlipidemia, and depression. Information
gathered included biometric data, an assessment of depression
(Beck Depression Inventory-II, BDI-II), and VCTE results.
Inclusion criteria included age of 18 years or older, residence in
the RGV, and having four grandparents who are either Mexican
or Mexican American.

The BDI-II was used to assess the degree of depressive
symptoms present over a 2-week period (34). The BDI-II

assesses the severity of depression and is an acceptable screening
instrument for depression when administered in both Spanish
and English (35–37). We measured hepatic fibrosis reported as
the LSM Youden Index (kPa) and analyzed it as a continuous
variable (Echosens, Paris, France) (13, 38, 39). Participants
were excluded from elastography if they were pregnant, had an
implant, or had a pacemaker. We asked participants to fast for
at least 3 h before the exam. The participants lay supine, face-
up on the exam table, and fully abducted their right arm. The
automatic probe section tool within the device chose the correct
probe size (M/XL). Ultrasound conduction gel was applied to the
abdomen at the 8th–10th intercostal rib space at the mid-axillary
line. Measurements were performed by scanning the right liver
lobe through the intercostal space. CAP is an average estimate
of ultrasound attenuation at 3–5 MHz (dB/m). LSMs are an
average measurement of stiffness at a shear wave frequency of
50 Hz. The results are expressed in kilopascals. In this study, only
LSM examinations with at least 10 validated measurements and a
success rate of at least 30% were considered reliable. The median
value of successful measurements was selected as a representative
of the LSM (13, 14, 40, 41).

Statistical Analysis
We estimated heritabilities (h2) and genotype × environment
interaction using a variance component approach as
implemented in the freely available computer program SOLAR.1

Each liver-related phenotype (CAP and kPa) was regressed
against age, sex, age-squared, sex-by-age, and sex-by-age-
squared, and then the regression residuals derived for each trait
were normalized using an inverse normal transformation (42).

Genotype-by Environment (G × E)
Interaction Model for Continuous
Environments
The base model—known as the polygenic model—is used to
obtain estimates of liver trait heritabilities and as a model
reference point upon which complex models can be elaborated.
For a sample of related individuals, the polygenic model posits
that the phenotypic covariance is decomposable into additive
genetic and residual environmental variance components, and
that inter-individual covariances will be given strictly by the
additive genetic variance weighted by the genetic relatedness
coefficient, assuming (for genetic covariance) that the pairwise
genetic correlation across environments is unity, and that the
additive genetic variance is homogeneous. Under the G × E
model, we relax these assumptions by expressing both the
additive genetic variance and genetic correlations as continuous
functions of a specific environment (e.g., extent of depressive
symptoms) to capture any potential interaction between the
genetic effects (i.e., the additive genetic variance and/or genetic
correlation) and the specific environment. The null hypothesis is
that the expression of the aggregate of all genotypes underlying
a phenotype (polygenotype) is independent of the specific
environment. Rejection of the null hypothesis implies that the

1http://solar-eclipse-genetics.org/brief-overview.html
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genotype–phenotype map for the trait in question depends on a
specific environment or is a function of the specific environment.
We begin to study the problem of the genotype–phenotype map
potentially being dependent on the environment by modeling
the G × E interaction variance. The G × E interaction variance
is zero if the following two conditions are simultaneously
true: (1) homogeneity of the additive genetic variance across
environments: σ2

g1 = σ2
g2 = σ2

g , where σ2
g1 and σ2

g2 are the
additive genetic variance in environments 1 and 2, respectively;
(2) complete pleiotropy (i.e., the same genes are active across
environments) in which the genetic correlation (ρg) is one
across environments: ρg = 1. There is G × E evidence if either
null hypothesis is rejected (43). Rejection of either or both is
evidence that the phenotypic response to the environment has
a genetic basis.

We modeled the genetic variance and cross-environment
genetic correlation as functions of depression, where the
quantitative measure of depression is given as the total score on
the BDI-II. Since it is likely that our focal “environment” is also
influenced by genetic factors, we first tested for genetic factors
underlying the BDI-II measure of depression, and observed a
significant heritability of 0.38 (p < 1.0 × 10−5). Because we are
interested in the purely environmental component of depression,
we computed a prediction of the associated genetic values
using Best Linear Unbiased Prediction (BLUP) methods. BLUP
accounts for additive genetic and environmental covariances
among relatives based on known pedigree structure (44). We then
subtracted the BLUP genetic values for BDI from the original
(BDI-derived) depression variable to get a BLUP-computed
depression variable that reflects primarily environmental effects
(44). This lattermost variable is the focal (genetically corrected)
environment in our G × E model.

For the genetic variance function (and similarly for the
environmental variance), we modeled the variance using an
exponential function of depression, where the exponential
function maintains positivity, which is required of a variance (45)
σ2

g = exp [αg + γg (BDI)], where αg and γg are parameters to
be estimated. Taking the natural logarithm of the exponential
function, the variance homogeneity null hypothesis holds for
a slope-term equal to 0: γg = 0. The genetic correlation was
modeled using the exponential decay function of the pairwise
differences in BDI scores: ρg = exp [−λ| BDIx − BDIz|] where
BDIx and BDIz are the values of the BDI for any two individuals
x and z. The null hypothesis that the genetic correlation is equal
to 1 is equivalent to λ = 0 because in this event: ρg = exp [−λ|
BDIx − BDIz|] = e0 = 1.

We carried out model evaluations and hypothesis testing in
two stages. In stage one, we examined if the overall G × E
interaction model provided a better fit to the data when compared
with the polygenic model by way of a likelihood ratio test
(LRT). It is important to note that the polygenic model is fully
nested within the G × E interaction model and that relative
to the polygenic model, the G × E interaction model has
three additional parameters (γg , γe, and λ; αg and αe are re-
parameterized versions of the variances). The LRT statistic for
this comparison is distributed as a 50:50 mixture of Chi-squares
with 2 and 3 degrees of freedom (df) (42, 43, 46).

In the second stage, we examine the more specific G × E
interaction hypotheses. The full G × E model with all parameters
estimated was compared with models when either gamma (γ)
or lambda (λ) was constrained to 0 to, respectively, test the
hypotheses of additive genetic variance homogeneity and a
genetic correlation equal to 1. The distributions of the LRT
statistics are, respectively, a Chi-square with 1 df, and a 50:50
mixture of a Chi-square with a point mass at 0 and a Chi-square
with 1 df (43, 46). As part of this stage, we determined if each
of the three additional parameters in the full G × E interaction
model (γg , γe, and λ) should even be included at all by comparing
its maximum likelihood estimate (MLE) to its standard error
(SE). A parameter is roughly significant if its MLE is greater than
twice its SE based on likelihood theory. Therefore, if a parameter
SE was greater than its MLE, we judged that parameter to be
statistically unimportant. Further, the additional parameters were
formally tested by the tests mentioned above. If any of the three
additional parameters were found to have SEs greater than their
MLEs and if these were found to be formally insignificant, we
then compared a reduced version of the G × E interaction model
to the polygenic model, excluding the insignificant parameters.

RESULTS

The demographic characteristics (age, CAP, kPa, BDI-II) by sex
of the cohort are listed in Table 1. There were no significant
differences between males and females, as inferred from unpaired
t-tests assuming unequal variances.

Heritability
Individuals with a complete data set (279) were analyzed. As
reported in Table 2, we found statistically significant moderate
heritability for hepatic fibrosis (h2 = 0.37, p < 0.01) and steatosis
(h2 = 0.33, p = 0.01). We formally compared the full G × E
interaction model to the polygenic model for both kPa and
CAP (Table 3).

TABLE 1 | Demographic characteristics of the sample.

Trait Females (N = 205) Males (N = 74)

Mean SD Mean SD

Age 44.29 15.51 46.04 16.28

CAP 286.61 65.19 290.66 63.14

kPa 6.69 4.50 7.13 4.24

BDI-II 5.67 6.26 4.53 5.92

All four variables were tested for differences across females and males by an
unpaired t-test assuming unequal variance, and it was found that there are no
significant differences.

TABLE 2 | Heritability analysis of FibroScan variables.

Trait Heritability Standard error Sample size P-value

Hepatic fibrosis (kPa) 0.36 0.14 279 <0.01

Steatosis CAP 0.33 0.14 279 0.01
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It is important to note that full G × E interaction model has
three additional parameters of interest compared to the basal
polygenic model, one of which has a null hypothesis on the
boundary of its permissible parameter space. For this reason,
the formal comparison gives a 50:50 mixture of Chi-squares
with 2 and 3 df. To ensure best-model selection, we took under
consideration that the two “slope” parameters, which allow for
genetic and environmental variance heterogeneity, both had SEs
larger than their respective MLEs, whereas the MLE for the
genetic correlation decay parameter was larger than its SE.

Formal 1 df testing of the genetic and environmental variance
heterogeneity parameters showed that they are not significant
for both CAP and kPa (Tables 4, 5). On the other hand, for
kPa, but not for CAP, the genetic correlation decay parameter,
which allows for exponential decay from a null hypothesis of
1, was found to be significant both when compared to the full
G × E interaction model and when compared to a reduced G × E
interaction model where the genetic and environmental variance
slope parameters were constrained to 0. Regarding this lattermost
result of a significant genetic correlation decay parameter,
the comparison is equivalent to comparing a re-parameterized
polygenic model (because the three additional parameters are
now constrained to their nulls) to a reduced G × E interaction
model where now the only additional parameter is the genetic
correlation decay parameter. The environmental-dependence
of the genetic correlation across environments suggests that
different genes are involved in liver variation conditional upon
the depression environment. This evidence confirms that genetic
factors interact with depression (the environment) to influence
the expression of hepatic fibrosis.

DISCUSSION

We investigated the impact of G × E interaction on NAFLD
variation in Mexican Americans from the RGV. We determined

TABLE 3 | Testing the full G × E interaction model against the polygenic model.

Trait Model ln-likelihood Chi-square P-value

Hepatic fibrosis (kPa) Polygenic −129.94

Full G × E −127.28 5.31 0.07

Steatosis (CAP) Polygenic −131.43

Full G × E −130.69 1.48 0.48

TABLE 4 | Testing the critical parameters of the full G × E
interaction model for CAP.

Model ln-likelihood Chi-square P-value

Constrained genetic slope −131.43 1.48 0.58

Constrained environmental
slope

−130.97 0.55 0.46

Constrained genetic
correlation decay

−131.43 1.48 0.22

Full G × E interaction
model

−130.69 0 0.50

TABLE 5 | Testing the critical parameters of the full G × E
interaction model for kPa.

Model ln-likelihood Chi-square P-value

Constrained genetic slope −127.65 0.75 0.39

Constrained environmental
slope

−127.30 0.04 0.83

Constrained genetic
correlation decay

−129.37 4.17 0.02

Full G × E interaction
model

−127.28

that both hepatic fibrosis and steatosis were moderately heritable.
Our heritability findings are consistent with those of earlier
studies [heritability = 0.27 (SE = 0.08) in the Old Order
Amish Study, and 0.26 (SE = 0.04) in the Framingham Heart
Study population] (47). Cohort-specific estimates of heritability
for hepatic steatosis in a Hispanic-American population was
estimated at 0.20 (SE 0.07) (48). In a cross-sectional analysis
of a cohort of well-characterized 60 pairs of twins adjusted for
age, sex, and ethnicity, the heritability of hepatic steatosis was
0.52 (95% confidence interval, 0.31–0.73; p < 1.1 × 10−11)
and the heritability of hepatic fibrosis was 0.5 (95% confidence
interval, 0.28–0.72; p < 6.1 × 10−11) (49). The heritability of
steatosis and hepatic fibrosis are similarly confirmed by cross-
sectional analyses, which have found that first-degree relatives of
patients with advanced hepatic fibrosis exhibit advanced fibrosis
themselves at a rate 12 times higher (17.9%) than first degree
relatives of those without (1.4%) and 78% of parents with children
who have NAFLD exhibit hepatic steatosis (50, 51).

Employing variance component models, likelihood-based
statistical inference, and further refinement with the BLUP-
computed depression variable, we found that the response of
fibrosis to the depression environment is heritable; the G × E
interaction variance is significant.

Using a meta-analysis, Xiao et al. demonstrated that patients
with non-NASH have a significantly higher prevalence of
depression than patients with NAFLD (RR: 2.83, p < 0.001)
(52). Increased expression of inflammatory cytokines seen in
steatohepatitis may explain the NAFLD-depression interaction
(53, 54). Growing evidence supports NAFLD as a metabolic
companion of psychiatric disorders with common shared
inflammatory pathways (55–59). There are increased levels of
Interleukin L (IL-17), a proinflammatory cytokine, as well as
increased T-helper 1 (TH-1) cells (that produce IL-17) in adult
patients with depression as compared to healthy controls (60).
The presence of TGF-beta is required for the development of
TH-1 cells, which are also elevated in depression, providing
further evidence for a relationship between depression and
inflammation (61).

The role of IL-17 in depression and NAFLD, as well as
comorbid visceral adiposity and atherosclerosis, is also well
documented. A strong relationship was found between the IL-
17-related chemokine eotaxin and Intimate-Media Thickness (a
functional and structural marker of the process that relates to
coronary artery disease and NAFLD). The association found
between the amount of visceral fat and circulating levels of
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eotaxin and IMT could reinforce the hypothesis that IL-17,
released by the visceral adipose tissue, induces eotaxin secretion
via the smooth muscle cells present in the atheromatous
vessels (62).

It appears that an inflammatory process mediates many
chronic illnesses through upregulation of exclusively pro-
inflammatory gene expression. This is consistent with our
finding that the genetic correlation function for fibrosis decays
away from 1 (i.e., from being fully correlated) with increasing
differences in the depression environment between any two
given individuals, which indicates that individuals at different
ends of the depression “spectrum” may be expressing different
sets of genes. Concerning inflammation, this may demonstrate
a progression from a more neutral set of genes to a relatively
pro-inflammatory set of genes.

Implications for Research
The findings in this report are based on a relatively small
(n = 279). Future research will focus on larger sample sizes
and may identify other potential interactions. Our focus is on
Mexican Americans, and future research will determine if the
finding of genotype by environment interaction effects between
NAFLD and depression is replicated in other populations.

CONCLUSION

We examined potential G × E interaction using variance
component models and likelihood-based statistical inference in
the phenotypic expression of NAFLD including hepatic steatosis
and hepatic fibrosis. We assessed depression (environment)
using the BDI-II and identified significant G × E interactions
for hepatic fibrosis and depression. These findings provide

evidence that genetic factors interact with depression to
influence the expression of hepatic fibrosis. Future directions
will focus on identifying the nature of the interactions and the
specific genes involved.
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