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Background: Genetic research may inform underlying mechanisms for disparities in
the burden of type 2 diabetes mellitus among American Indians. Our objective was to
assess the association of genetic variants in cardiometabolic candidate genes with B cell
dysfunction via HOMA-B, insulin resistance via HOMA-IR, and type 2 diabetes mellitus
in the Strong Heart Family Study (SHFS).

Methods and Results: We examined the association of variants, previously
associated with cardiometabolic traits (∼200,000 from Illumina Cardio MetaboChip),
using mixed models of HOMA-B residuals corrected for HOMA-IR (cHOMA-B), log
transformed HOMA-IR, and incident diabetes, adjusted for age, sex, population
stratification, and familial relatedness. Center-specific estimates were combined using
fixed effect meta-analyses. We used Bonferroni correction to account for multiple
testing (P < 4.13 × 10−7). We also assessed the association between variants in
candidate diabetes genes with these metabolic traits. We explored the top SNPs in an
independent, replication sample from Southwestern Arizona. We identified significant
associations with cHOMA-B for common variants at 26 loci of which 8 were novel
(PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA, FLJ16686). The most
significant variant association with cHOMA-B was observed on chromosome 5 for an
intergenic variant near PARP8 (rs2961831, P = 6.39 × 10−9). In the replication study,
we found a signal at rs4607517 near GCK/YKT6 (P = 0.01). Variants near candidate
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diabetes genes (especially GCK and KCNQ1) were also nominally associated with
HOMA-IR and cHOMA-B.

Conclusion: We identified variants at novel loci and confirmed those at known
candidate diabetes loci associations for cHOMA-B. This study also provided evidence
for association of variants at KCNQ2, CTNAA2, and KCNQ1with cHOMA-B among
American Indians. Further studies are needed to account for the high heritability of
diabetes among the American Indian participants of the SHFS cohort.

Keywords: American Indian, insulin-secreting cells, insulin resistance, genome-wide association study, diabetes
mellitus

INTRODUCTION

The burden of type 2 diabetes mellitus among American Indians
is disproportionately high with an estimated prevalence ranging
between 34 and 68% compared to 9.3% in the general U.S.
population (Acton et al., 2002; Lee et al., 2002). In addition to
high prevalence, incidence is twice as high among American
Indians compared to the U.S. general population (Welty et al.,
2002; Narayan et al., 2006). While largely attributed to the obesity
epidemic, other risk factors especially among American Indians
are not well understood, particularly genetic susceptibility (North
et al., 2003; Franceschini et al., 2008; Haiman et al., 2012; Yang
et al., 2012).

Pathogenesis is increasingly being attributed to B cell
dysfunction compared to insulin resistance in peripheral
tissues (Patti, 2004). Heritability for HOMA-beta cell function
(HOMA-B), HOMA-IR, type 2 diabetes mellitus are 0.28–0.78,
0.08–0.75, and 0.26–0.70, respectively (Jenkins et al., 2000; Mills
et al., 2004; Poulsen et al., 2005; Almgren et al., 2011). Several
of the diabetes-associated genes, including PPARG and SLC30A8,
initially identified in individuals of European ancestry, have also
been replicated in other populations (Lewis et al., 2008; Chauhan
et al., 2010; Yang et al., 2010). Generalization to other ethnic
groups has been limited, especially among American Indians
(Franceschini et al., 2008; Fesinmeyer et al., 2013; Hanson et al.,
2014). Genome-wide linkage analysis in Strong Heart Family
Study (SHFS) has demonstrated segregation of diabetes and
metabolic trait related variants among American Indian families
(North et al., 2003; Franceschini et al., 2008). Yet, most genetic
loci identified in other ancestries have not replicated in American
Indians (Kovacs et al., 2003; Rong et al., 2009; Haiman et al.,
2012; Fesinmeyer et al., 2013). The main goal of this study was
to assess the associations between genetic variants previously
associated with cardiometabolic traits and dysglycemia traits of
HOMA-B, HOMA-IR, and incident diabetes in American Indians
among SHFS participants who were free of diabetes at baseline
and replicated significant associations in an independent sample
from Southwestern Arizona.

Abbreviations: cHOMA-B, HOMA-beta cell function residuals corrected
for HOMA-IR; chr, chromosome; FPG, fasting plasma glucose; HOMA-B,
HOMA-beta cell function; HWE, Hardy-Weinberg equilibrium; IBD, identity by
descent; MetaboChip, Illumina Cardio-Metabo DNA Analysis BeadChip; MAF,
minor allele frequency; PC, principal component; PCA, principal components
analysis; SHFS, Strong Heart Family Study; SHS, Strong Heart Study; SNP, single
nucleotide polymorphism.

MATERIALS AND METHODS

Study Population
The SHFS is an extension of a large, population-based cohort
of American Indians in the Strong Heart Study (SHS), recruited
from thirteen tribes from three centers: Arizona, Oklahoma and
North and South Dakota. Details on participant recruitment
and information obtained in clinical visits have been published
(Lee et al., 1990; North et al., 2002). Briefly, the SHFS included
family members with a core sibship including at least 5 living
members of whom at least 3 had to be original SHS participants.
Recruitment of the SHFS participants was conducted in two
phases; 533 participants attended the baseline visit in 1998–99
and 1,941 participants attended the baseline visit in 2001–03.
Follow-up examinations were performed in 2001–03, 2005–06,
and 2014–15. Demographic and clinical characteristics were
collected at baseline and follow-up visits, including fasting
plasma glucose (FPG) and HbA1c. For this study, we included
participants without diabetes at baseline since our primary
outcome was HOMA-B. We further excluded individuals without
measured phenotypic and genotypic data (n = 1,923). During
follow-up, 256 participants developed diabetes. The replication
sample included 3,244 participants from a community in
Southwestern Arizona. Detailed information on participant
recruitment and data have been described elsewhere (Knowler
et al., 1990; Hanson et al., 2013).

All participants in this study provided written informed
consent and tribal consent. The study protocols were approved
by the Indian Health Service Institutional Review Board, by the
Institutional Review Boards of the participating Institutions, and
by the participating American Indian tribes.

Outcome Definition
HOMA-IR (mmol/L) was calculated by fasting insulin in
mU/L ∗ fasting glucose in mmol/L)/22.5 (Matthews et al.,
1985). HOMA-B was calculated using baseline data of
participants without diabetes, and the equation described
by Matthews et al. (1985) (20 ∗ fasting insulin in mU/L)/(fasting
glucose in mmol/L - 3.5). To incorporate the influence of
insulin resistance, corrected HOMA-B (cHOMA-B) was
created as the residuals when HOMA-B was regressed on
HOMA-IR (HOMA-B = mean HOMA-B + beta coefficient
∗ HOMA-IR). Diabetes was defined as a fasting plasma
glucose ≥ 6.99 mmol/L or use of insulin or oral hypoglycemic
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medications. Incident diabetes was defined as new cases during
subsequent follow-up visits (mean follow-up 6.6 years, range
3.0–12.3 years).

Genotyping
Blood DNA from baseline was genotyped using the Illumina
Cardio-Metabo DNA Analysis BeadChip (MetaboChip) (Voight
et al., 2010). MetaboChip included 196,725 single nucleotide
polymorphisms (SNPs) selected based on meta-analysis of
cardiometabolic traits and includes replication targets and
fine-mapping regions. Samples were excluded when sample
call rate < 95%, mismatch between genotyped and reported
gender, outlier in identity by descent (IBD) clustering, or
outlier in principal components analysis (PCA). SNPs were
excluded if: call rate < 98% or no data (n = 33,604);
not autosomal (n = 250); monomorphic (n = 158); or
violated Hardy-Weinberg equilibrium (HWE) P < 1 × 10−5

(n = 1,519). PCA was performed on a matrix of doses of
copies of minor allele for SNPs selected among genotyped
founders or unrelated individuals based on minimum spacing
of 1 kb, minor allele frequency (MAF) ≥ 0.05, pairwise
correlation of genotype scores < 0.1, and within a sliding
window of 100 kb. The first four principal components (PCs)
account for substantially more than the rest (cumulatively
8.8% of total variance) (Burdick et al., 2006). In SHFS, the
first three PCs cluster by study center and some clustering
with less clear separation is apparent for the fourth PC
reported in the electronic Supplementary Material. Family-
based imputation of genotyped SNPs was done with a PEDSYS-
compatible version of Merlin using human genome build 18
(NCBI36/hg18); genotype information from relatives was used
to impute missing values (Dyke, 1996; Pruitt et al., 2006). After
imputation and quality control, 120,975 SNPs were available for
analyses.

Statistical Analysis
All analyses were performed using mixed effects models,
to account for family relatedness, for quantitative traits
(i.e., HOMA-IR and HOMA-B) and qualitative outcomes
(incident diabetes). Analyses was implemented using Sequential
Oligogenic Linkage Analysis Routines (SOLAR) assuming
additive effect (Blangero and Almasy, 1996). HOMA-B values
cannot be evaluated without taking HOMA-IR into account
(Pfützner et al., 2010). Based on previous literature, we regressed
HOMA-B on HOMA-IR and added the mean HOMA-B to the
model residual for interpretability (Willett and Stampfer, 1986;
Balakrishnan et al., 2018). These scores were called cHOMA-B
and were used as traits in genetic analyses (Supplementary
Figure 1). Since HOMA-IR values were right-skewed, they
were natural log transformed. For HOMA scores, models were
adjusted for age at baseline, sex, and first four PCs to adjust
for global population stratification. For diabetes, models were
adjusted for age at follow-up (mean 42.4 years), sex, and
first four PCs. Healthy controls were defined as participants
who did had normal or impaired fasting glucose and who
were not taking medications. Due to possible differences in
allele frequencies among recruiting centers, all models were

stratified by recruiting centers. The results from center-stratified
association analyses were meta-analyzed using inverse-variance-
weighting models implemented using METAL software (Willer
et al., 2010).

The array wide significance threshold for multiple testing
using Bonferroni correction was 4.13 × 10−7 and using
the Moskvina and Schmidt method accounting for linkage
disequilibrium (LD) was 7.77× 10−7. We performed conditional
analysis on the SNPs with lowest p-values to identify independent
associations at each locus. Models were assessed for genomic
inflation (Supplementary Figure 2). As sensitivity analyses,
we excluded participants with diabetes during follow-up for
the HOMA score models. For incident diabetes, we also
modified the case definition to include HbA1c thresholds
and control definition to exclude participants with impaired
fasting glucose. Replication of significant SNPs was assessed
for nominal significance (P < 0.05) in an independent sample
from a community in Southwestern Arizona (n = 3,244) without
diabetes for cHOMA-B. Models were adjusted for age, sex, and
first five PCs to account for population stratification in the
sample.

RESULTS

Table 1 shows the baseline characteristics of the study population.
Over a mean follow-up of 6.6 years (12,667.6 person-years),
256 participants or 13.5% of the study population developed
incident diabetes. On average, participants who developed
diabetes had nearly 1 year longer follow-up than participants
who did not develop diabetes. Participants developing incident
diabetes were older, more often obese, and had a higher fasting
glucose, HOMA-B and HOMA-IR at baseline (P < 0.05). When
corrected for HOMA-IR, cHOMA-B was lower among those
who developed diabetes (median 158.1) compared to those
who did not develop diabetes during follow-up (median 188.6)
(P < 0.01).

The genomic inflation factor (λ) for cHOMA-B, HOMA-IR,
and diabetes were 1.11, 1.02, and 1.24, respectively
(Supplementary Figure 2). We identified several genes in
the Cardio MetaboChip significantly associated with cHOMA-B
(P < 4.13 × 10−7) (Supplementary Table 1). A total of
28 variants in 25 distinct loci were statistically significantly
associated with cHOMA-B (Figure 1). The associations observed
near PRSS7, FCRL5, PEL1, LRP12, IGLL1, ARHGEF10, PARVA,
and FLJ16686 are novel for a biomarker of B cell dysfunction.
GCK demonstrated the most consistent association with B-cell
function phenotypes. In particular, rs4607517 (G > A) was
associated with a decrease in cHOMA-B of 19.54 units in SHFS
(P = 2.67× 10−7) and 11.26 in the replication sample (P = 0.01).
The most significant SNP associated with cHOMA-B was
rs2961831 (A > C), an intergenic variant, located at 5q11/PARP8
(Table 2). Each copy of allele C was associated with increases
of 23.11 units of cHOMA-B (P = 6.39 × 10−9). Of the variants,
3 regions at 5q11/PARP8, 12q24/CUX2, and 15q12/ATP10A
had multiple variant associations that passed the significance
threshold (Figure 2). Conditional analysis on index SNPs
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TABLE 1 | Baseline characteristics by development of diabetes during follow-up.

Total Incident diabetes Controlsb P-value

Sample size 1, 892 256 1, 636

Median follow-up, yrs (IQR) 6.1 (5.0− 8.0) 6.9 (5.5− 9.6) 6.0 (5.0− 7.6) <0.01

Mean age, years (SD) 36.4 (15.5) 39.2 (14.1) 36.0 (15.7) <0.01

No. Female (%) 1, 140 (60.3) 146 (57.0) 994 (60.8) 0.26

Center (%) <0.01

Arizona 195 (10.3) 48 (18.8) 147 (9.0)

Oklahoma 796 (42.1) 92 (35.9) 704 (43.0)

North/South Dakota 901 (47.6) 116 (45.3) 785 (48.0)

Mean BMI, kg/m2 (SD) 30.4 (7.3) 35.7 (8.5) 29.6 (6.7) <0.01

Mean fasting glucose, mmol/L (SD) 5.2 (0.6) 5.6 (0.6) 5.1 (0.5) <0.01

Mean fasting insulin, pmol/L (SD) 115.3 (114.6) 182.7 (150.0) 104.9 (104.2) <0.01

Median HOMA-IR (IQR) 2.7 (1.7− 4.6) 5.0 (3.3− 8.3) 2.5 (1.6− 4.1) <0.01

Median HOMA-B (IQR) 155.2 (104.2− 246.0) 201.0 (134.1− 335.8) 148.7 (99.5− 231.3) <0.01

Median cHOMA-Ba (IQR) 186.1 (153.3− 235.9) 158.1 (109.1− 219.1) 188.6 (157.4− 237.3) <0.01

aCorrected HOMA-B; Sum of residuals adjusted for HOMA-IR and mean HOMA-B. bControls are individuals that did not develop diabetes at follow-up.

FIGURE 1 | Manhattan plot of corrected HOMA-B. SNP associations mapped using NCBI36/hg18 build position. The solid line is the MetaboChip-wide Bonferroni
significance threshold at −log(4.13 × 10−7) or 6.38. The dashed line is the MetaboChip-wide Moskvina-Schmidt LD significance threshold at −log(7.77 × 10−7) or
6.11.

suggested the presence of a single association at each locus.
Results for all significant SNP associations for log transformed
HOMA-B and cHOMA-B are presented as Supplementary
Material (Supplementary Table 1).

We assessed the top 28 SNPs for cHOMA-B in an independent
sample from Southwestern Arizona (Table 2). Variants had
similar MAF in the replication sample compared to the SHFS,
but we were not able to replicate many of these associations in
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TABLE 2 | Main associations for cHOMA-B and log HOMA-IR.

rsID Chr Position Alleles Gene Location Strong heart family study Replication sample

MAF Beta P-value MAF Beta P-value

rs284201 1 92012826 G/A TGFBR3 intron 0.27 16.72 2.04 × 10−7 0.19 − 1.75 0.72

rs1972239 1 155775425 A/G FCRL5 intron 0.18 22.00 3.17 × 10−7 0.15 − 6.06 0.25

rs1252068 1 175868691 A/G LOC400796, SEC16B intergenic 0.35 − 18.61 8.80 × 10−8 0.45 − 2.09 0.58

rs7588499 2 54581780 A/G SPTBN1 intron 0.49 13.76 2.06 × 10−7 0.41 − 1.13 0.77

rs6748843 2 64383898 A/G PELI1, LOC130773 intergenic 0.47 18.01 1.97 × 10−7 0.35 − 6.74 0.10

rs3732678 3 12836608 A/C CAND2 coding 0.25 20.22 1.03 × 10−7 0.40 − 0.10 0.98

rs12642615 4 36914666 G/A FLJ16686, KIAA1239 intergenic 0.38 16.88 2.02 × 10−8 0.32 − 0.16 0.97

rs4139 4 163610383 A/G FSTL5, LOC729971 intergenic 0.35 16.99 3.23 × 10−7 0.35 − 3.79 0.35

rs2961831 5 50490690 A/C PARP8, LOC642366 intergenic 0.40 23.11 6.39 × 10−9 0.35 0.26 0.95

rs2962246 5 50485571 A/G PARP8, LOC642366 intergenic 0.40 23.11 6.39 × 10−9 0.35 0.21 0.96

rs4448128 6 116137499 C/G LOC441167, FRK intergenic 0.25 − 16.62 4.08 × 10−7 0.16 − 6.92 0.18

rs654993 6 160488886 G/A SLC22A1 intron 0.23 18.31 7.74 × 10−8 0.14 1.74 0.75

rs38179 7 15865240 A/G MEOX2, LOC729920 intergenic 0.45 21.54 6.26 × 10−8 0.48 3.05 0.42

rs4607517 7 44202193 G/A GCK, YKT6 intergenic 0.26 − 19.54 2.67 × 10−7 0.31 − 11.26 0.01

rs7386942 8 1890157 G/A ARHGEF10 intron 0.48 − 14.43 3.94 × 10−7 0.50 − 7.24 0.05

rs16872183 8 106094163 A/G LRP12, ZFPM2 intergenic 0.26 − 22.62 1.24 × 10−7 0.37 − 5.14 0.19

rs10738708 9 25231316 A/C TUSC1, LOC10012966 intergenic 0.43 17.26 3.89 × 10−7 0.40 − 1.91 0.61

rs4149270 9 106686898 G/A ABCA1 intron 0.23 − 22.99 2.46 × 10−7 0.18 − 0.50 0.51

rs997067 10 55709300 A/C PCDH15 intron 0.37 20.51 2.47 × 10−7 0.29 4.17 0.32

rs4237723 11 12594808 A/G PARVA, TEAD1 intergenic 0.45 18.33 4.82 × 10−8 0.40 − 3.36 0.38

rs10777559 12 76822590 C/A NAV3 intron 0.25 − 26.21 2.58 × 10−8 0.17 − 1.50 0.77

rs10744770 12 110146961 G/A CUX2 intron 0.21 − 23.4 1.36 × 10−7 0.16 − 3.87 0.45

rs4766451 12 110155065 C/A CUX2 intron 0.22 − 23.46 1.60 × 10−7 0.17 − 3.82 0.45

rs9528062 13 59628504 G/A DIAPH3 intron 0.28 − 18.51 3.40 × 10−7 0.24 − 2.23 0.61

rs883496 15 23481396 G/A ATP10A intron 0.47 − 23.44 6.49 × 10−9 0.48 1.01 0.79

rs10152552 15 23482358 A/G ATP10A intron 0.47 23.44 6.49 × 10−9 0.48 1.02 0.79

rs2826602 21 21198206 G/A PRSS7, NCAM2 intergenic 0.34 − 18.17 2.49 × 10−7 0.39 5.94 0.13

rs131409 22 22221107 A/G LOC388882, IGLL1 intergenic 0.27 19.82 2.72 × 10−7 0.32 − 3.28 0.42

Gene base position based on NCBI36/hg18 build. P-values of significant SNPs are italicized (P < 4.13 × 10−7). Chr, chromosome; cHOMA-B, corrected homeostatic
model assessment – B cell function; MAF, minor allele frequency. follow-up.

the replication sample except rs4607517. One variant showed
nominal significance; an intergenic SNP rs4607517 (G > A;
MAF in replication sample 0.31) showed an effect estimate of
–11.26 (P = 0.01) compared to an effect estimate of –19.54
(P = 2.67× 10−7) in the SHFS (MAF 0.26).

The top association for log transformed HOMA-IR was
with rs7609071 (G > C) near CTNAA2 (P = 1.34 × 10−5)
(Supplementary Table 1). Each copy of the C allele was
associated with an increase of 0.84 and 0.79 units of HOMA-IR
in Oklahoma, and the Dakotas respectively, (effect estimate
–0.18, –0.24) (Supplementary Table 1). Other SNPs at 2p11-12
were nominally associated with cHOMA-B. In addition to being
associated with cHOMA-B, rs7609071 was associated with the
index HOMA-IR (P = 2.51× 10−3) but not with incident diabetes
(P = 0.87). There was no significant evidence for association of
SNPs with incident diabetes (Supplementary Table 1).

In the MetaboChip data, there were seven candidate diabetes
loci (Supplementary Table 2) with 1,446 SNPs that passed quality
control. Among the observed associations, an intronic SNP
rs163170 (KCNQ1) was significantly associated with HOMA-
IR and with cHOMA-B (Table 3). This variant is located near

the previously reported SNP at this locus (rs8181588) although
their correlation is low in our American Indian population (LD
r2 = 0.29) (McCarthy and Zeggini, 2009; Hanson et al., 2014).
None of the MetaboChip SNPs in the candidate genes were
associated with incident diabetes.

DISCUSSION

Our study validates diabetes-related loci in American Indians,
a population with a large burden of diabetes. Among the SHFS
participants, the diabetes prevalence was 15.6%, which is high
compared to the 9.3% prevalence reported in the general U.S.
population (Acton et al., 2002; Lee et al., 2002). The diabetes
prevalence is especially disproportionate among younger age
groups, where the crude prevalence in NHANES among 18–
44 ages was 5.0% (Menke et al., 2015) compared to 12.4% in
the SHFS. Our study demonstrated that known cardiometabolic
loci are involved in B cell dysfunction and insulin resistance
in American Indians. In particular, we identified GCK variant
rs4607517, which was previously identified including MAGIC
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FIGURE 2 | Regional association plot of PARP8, CUX2, and ATP10A for corrected HOMA-B. Multiple SNP associations for cHOMA-B are 5q11/PARP8 (top panel),
12q24/CUX2 (middle panel), and 15q12/ATP10A (bottom panel), using NCBI36/hg18 build and European American recombination rates.

Frontiers in Genetics | www.frontiersin.org 6 October 2018 | Volume 9 | Article 466

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00466 October 11, 2018 Time: 16:47 # 7

Balakrishnan et al. Variants of Diabetes Traits in Strong Heart

TABLE 3 | Main candidate gene associations for cHOMA-B and log HOMA-IR.

rsID Chr Position Alleles MAF Gene Location cHOMA-B HOMA-IR Diabetes

Beta P-value Beta P-value Beta P-value

rs4135273 3 12414329 G/A 0.01 PPARG intron −0.01 0.01 −0.21 0.05 −0.04 0.62

rs16860216 3 186971576 G/A 0.13 IGF2BP2 intergenic 0.13 0.02 −0.07 0.03 −0.03 0.57

rs3731201 9 21978896 A/G 0.04 CDKN2A intron −0.01 0.09 −0.02 0.39 −0.01 0.76

rs3218018 9 21988139 A/C 0.03 CDKN2B intergenic −0.06 0.18 −0.08 0.24 −0.05 0.72

rs4639863 10 114844373 G/A 0.37 TCF7L2 intergenic 0.23 0.01 0.08 0.04 −0.01 0.75

rs163170 11 2778003 G/A 0.50 KCNQ1 intron 0.04 6.27 × 10−6
−0.11 2.16 × 10−4

−0.01 0.92

rs35379941 12 119909772 T/A 0.11 HNF1A intron −0.01 0.35 0.06 0.17 0.02 0.41

Gene base position based on NCBI36/hg18 build. Chr, chromosome; cHOMA-B, corrected homeostatic model assessment – B cell function; MAF, minor allele frequency.
P < 0.05 for significant replication.

consortium and MESA cohort (Dupuis et al., 2010; Rasmussen-
Torvik et al., 2012). We also identified some novel associations
using the Cardio MetaboChip array, such as the association of
cHOMA-B with PARP8. In the diabetes candidate gene analysis,
we identified an association of an intronic SNP rs163170 in
KCNQ1 with both cHOMA-B and HOMA-IR.

The variants associated with cHOMA-B are located near or
in genes that show involvement in biological mechanisms
such as metabolism (GCK, PRSS7), movement across
extracellular and intracellular membranes (FCRL5, SEC16B,
TGFBR3, PEL1, FSTL5, SLC22A1, LRP12, ABCA1, ATP10A,
KCNJ2, NCAM2, IGLL1), activation and deactivation of
hydrolase enzymes (ARHGEF10, NAV3), transcriptional and
DNA-binding regulation (CAND2, ZFPM2, TUSC1, TEAD1,
CUX2), cell movement and adhesion (SPTBN1, PCDH15,
PARVA, DIAPH3), and cell cycle and apoptosis (FLJ16686,
FRK, MEOX2) (Pruitt et al., 2006). The most significant
variants for cHOMA-B were located at PARP8 [Poly(adenosine
disphosphate/ADP-ribosyl)ation – member VIII], which catalyze
the transfer of ADP-ribose from glutamic acid to aspartic acid,
possibly involving zinc fingers (Amé et al., 2004). Both CUX2
(Cut like homeobox 2), a DNA binding motif, and ATP10A
(ATPase phospholipid transporting 10A), a maternally expressed
aminophospholipid translocase across the lipid bilayer, were
previously reported in associations with diabetes related traits
including metabolic syndrome (Shim et al., 2014) and insulin
resistance (Irvin et al., 2011). In this study, we identified
associations with variants at loci not encompassed in linkage
peaks on chromosomes 3 and 4 as previously reported in
the SHFS (North et al., 2005). Our replication yielded one
nominal association for rs4607517 near GCK/YKT6 with
consistent directions for the beta estimates. This was the only
association that has been previously identified to be associated
with HOMA-B (Dupuis et al., 2010). Overall, we did not find
consistency between the findings in the two samples possibly
due to heterogeneity between the cohorts and centers in SHFS.
There may be heterogeneity in LD structure between the
populations. A preliminary measure is the notable difference in
MAF particularly in the variants of top candidate genes (GCK
and KCNQ1). There may also be heterogeneity in measurement
of variables including phenotypes that could partially account for
the differences in effect sizes and statistical significance.

In analyses of diabetes candidate genes, we identified an
association with several variants near KCNQ1, which encodes a
voltage-gated potassium channel and has been associated with
diabetes in individuals of European and East Asian ancestries
but also in Southwest American Indians (Schroeder et al., 2000;
McCarthy and Zeggini, 2009). KCNQ1 variants showed evidence
of functional effects in knockout mice (Hanson et al., 2014).
In vitro and murine studies have shown that the overactivity
of the potassium channels from overexpression of KCNQ1 can
create a current across the plasma membrane and impair insulin
secretion, thereby resulting in hyperglycemia (McCarthy and
Zeggini, 2009; Yamagata et al., 2011). In a study among American
Indians from central Arizona, KCNQ1 variants were associated
with incident diabetes (Franceschini et al., 2013; Hanson et al.,
2014). In our study,KCNQ1 variants are related to both a decrease
in HOMA-IR (effect -0.11) and with an increase in cHOMA-
B (effect 0.04). ENCODE data using HaploReg (v4.0) of the
diabetes candidate genes shows possible functional regulation
including binding to DNA hypersensitivity site, histone promoter
and enhancer sites to investigate in future studies.

Our study is one of the few that have investigated the
association of genetic determinants of diabetes traits among
American Indians. While the number of participants who
developed diabetes was relatively small for a genetic analysis, we
still identified several significant associations with cHOMA-B.
The small sample size with incident diabetes could partly
account for why our study was not able to replicate associations
seen in other ethnic groups. The SHFS is a unique cohort
especially for genetic studies because of the inclusion of related
participants from complex pedigrees with high burden of
diabetes. This allows for possible fine-mapping of association
signals by exploiting differences in LD patterns between
American Indians and European Americans among whom most
association studies have been conducted. Moreover, it allows for
the examination of generalizability of the detected associations
in non-European American ethnic groups. We tested variants
from the MetaboChip as it provides good coverage and also
prioritizes cardiometabolic SNPs and thus minimizes multiple
testing. Although it provides overall good coverage in different
populations, the MetaboChip or any GWAS chip for that
matter may miss SNPs in American Indian populations and
measured SNPs may have lower allele frequencies in American
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Indian populations. Even so, our study was able to replicate
some associations (Kovacs et al., 2003; Rong et al., 2009; Yang
et al., 2010). While the top SNPs showed limited evidence of
consistency in our replication sample, we believe this warrants
further investigation of the heterogeneity of genetic susceptibility
among American Indians. We observed inflation in the genomic
control factor (λ) statistic. However, previous investigations in
other cohorts have also reported this inflation when using the
MetaboChip panel, most likely because of fine-mapping of several
loci (Huertas-Vazquez et al., 2013). In addition, none of the
significant findings reported for cHOMA-B were in the loci
showing deviation from the diagonal.

Also, HOMA-B and HOMA-IR are surrogate measures of B
cell dysfunction and insulin resistance, respectively, and therefore
may not truly reflect mechanisms of developing diabetes (Wallace
et al., 2004). There is limited assessment of the validity of HOMA
scores, especially among various ethnic groups. Pfützner et al.
(2010) conducted a randomized control trial that highlighted the
inability of HOMA-B scores to replicate the findings of laboratory
measures of B cell function. Yet compared to other measures,
HOMA models are favorably used in diabetes epidemiologic due
to ease of measure and accuracy (Song et al., 2007). Another
caveat for HOMA-B is that it cannot be interpreted without
accounting for HOMA-IR. We used methodology developed in
nutritional epidemiology to account for correlated measures or
as in the case with HOMA-B and HOMA-IR, measures built
from similar underlying variables (Willett and Stampfer, 1986).
Thus, we corrected for the influence of HOMA-IR on HOMA-B
by using the HOMA-B residuals and adding a constant of mean
HOMA-B. The cHOMA-B phenotype is also less well studied and
therefore makes it difficult to compare with previously reported
associations. Finally, we cannot discount the possibility that
our incident diabetes participants include type 1 diabetes as is
usual in large epidemiologic cohorts such as the SHFS. However,
given that participants who developed diabetes during follow-up
were middle-aged (mean 39.2 years), we believe the number of
participants who may have had type 1 diabetes is low.

The novel and replicated associations for cHOMA-B provide
new information of genetic association for diabetes traits in
American Indians. We also validated associations of GCK
and KCNQ1 variants with diabetes in our study population.
Although our study has a small number of incident cases
and did not validate diabetes-associated loci, we identified
several variants in novel loci that are hypothesis-generating
for understanding genetic susceptibility in American Indians.
Further studies with larger sample size and dense markers are
needed to validate our results and identify additional loci unique
to American Indians. Further investigation is therefore warranted
to better understand the genetic susceptibility to diabetes among
American Indians.
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