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ABSTRACT:  
Non-alcoholic fatty liver disease (NAFLD) encompasses a range of 
liver conditions, from benign fatty accumulation to severe fibrosis. 
The global prevalence of NAFLD has risen to 25-30%, with 
variations across ethnic groups. NAFLD may advance to 
hepatocellular carcinoma, increases cardiovascular risk, is 
associated with chronic kidney disease, and is an independent 
metabolic disease risk factor. Assessment methods for liver health 
include liver biopsy, magnetic resonance imaging, ultrasound, and 
vibration-controlled transient elastography (VCTE by FibroScan). 
Hepatic transaminases are cost-effective and minimally invasive liver 
health assessment methods options. 
This study focuses on the interaction between genetic factors 
underlying the traits (hepatic transaminases and the FibroScan 
results) on the one hand and the environment (depression) on the 
other. We examined 525 individuals at risk for metabolic disorders. 
We utilized variance components models and likelihood-based 
statistical inference to examine potential GxE interactions in markers 
of NAFLD, including aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), and the AST/ALT ratio, and Vibration-
Controlled Transient Elastography (VCTE by FibroScan). We 
calculated the Fibroscan-AST (FAST) score (a score that identifies the 
risk of progressive non-alcoholic steatohepatitis (NASH) and 
screened for depression using the Beck Depression Inventory-II (BDI-
II). We identified significant G x E interactions for AST/ALT ratio x 
BDI-II, but not AST, ALT, or the FAST score. Our findings support that 
genetic factors play a role in hepatic transaminases, especially the 
AST/ALT ratio, with depression influencing this relationship. These 
insights contribute to understanding the complex interplay of 
genetics, environment, and liver health, potentially guiding future 
personalized interventions. 
Keywords: Mexican Americans, GxE, Transaminases, FAST Score, 
De Ritis ratio, FibroScan, Genetics, Heritability, Depression 
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Introduction 

The hepatic histologic spectrum of non-alcoholic 
fatty liver disease (NAFLD) ranges from non-
alcoholic fatty liver to non-alcoholic steatohepatitis, 
advanced fibrosis, and cirrhosis.1 The prevalence of 
NAFLD has risen to a global population high of 25-
30%, with significant variation among ethnic 
groups.2-5 NAFLD is a significant health concern that 
can progress to hepatocellular carcinoma5, 
increases cardiovascular risk, is associated with 
higher rates of chronic kidney disease, and is an 
independent risk factor for system-wide metabolic 
disease.6,7  
 

Hepatic transaminases are often used for screening 
as they are less invasive and more cost-effective 
than advanced technology.8 Increased aspartate 
aminotransferase (AST), alanine aminotransferase 
(ALT), and the AST/ALT (Di Ritis)9 ratio are the 
common laboratory measures used in the evaluation 
of liver health (AST > 37 or ALT > 40 U/L in males 
or AST or ALT > 31 U/L in females and an AST/ALT 
ratio>1). High concentrations of ratio are 
associated with various conditions, including NAFLD-
--the most common cause of elevated liver enzymes 
in adults in the United States, Japan, Australia, 
Europe, and the Middle East.10 A strong association 
exists between metabolic syndrome (central 
obesity, hypercholesterolemia, reduced HDL-
cholesterol levels, hypertension, and elevated 
plasma triglycerides, with insulin resistance) and the 
AST/ALT ratio.11  
 
Other measures of liver health include biopsy 
(invasive) and Magnetic Resonance Imaging 
(expensive), as well as Vibration Controlled 
Transient Elastography (VCTE by FibroScan)2,8 
which is accurate and facilitates liver health 
measurement in community-based healthcare and 
research settings.12,13 FibroScan quantifies the 
speed of the shear wave propagated by the 
ultrasonic wave through the liver. The controlled 
attenuation parameter (CAP) measures liver 
ultrasonic attenuation (degree of steatosis). A CAP 
of 300 dB/m is an accurate cutoff (PPV 95% CI) 
and NPV (95% CI) for diagnosing fatty infiltration. 
Liver stiffness measurements (LSMs) are expressed 
in kilopascals (kPa) and accurately measure the 
level of fibrosis.14 The presence of NAFLD is 
determined based on VCTE results and hepatic 
transaminases (FAST-AST) or FAST Score.8  
 
In our previous publication, we provide evidence 
that genetic factors interact with depression to 
influence the expression of hepatic fibrosis in 
Mexican Americans in our region.15 Plasma 
concentrations of liver enzymes are highly heritable 
(20-77%),16 suggesting a genetic role that may 

help interpret results and explain variation among 
individuals. Our findings shed light on the complex 
interplay between genetic predisposition, 
environmental factors, and mental health in the 
context of NAFLD among Mexican Americans. This 
study aims to determine if there are interactions 
between the genetic factors underlying the traits 
(hepatic transaminases and the FibroScan) on the 
one hand and the environment (depression).  
 

Materials and Methods 
The University of Texas Rio Grande Valley IRB 
approved the study protocol. All participants 
provided informed consent before participating in 
the study. In an ongoing genetic epidemiological 
study, we evaluated 525 Mexican American 
participants recruited from the community at risk for 
obesity, diabetes, hypertension, hyperlipidemia, 
and depression. The Rio Grande Valley is 
predominantly Mexican American (90 percent) with 
disproportionately high rates of obesity (55.5%), 
diabetes (32.5%), and depression (19%).15 

Information gathered included biometric data, an 
assessment of depression (BDI-II), and 
transaminases (AST, ALT, AST/ALT ratio). We also 
measured FibroScan results. The controlled 
attenuation parameter (CAP) measures liver 
ultrasonic attenuation, measuring the degree of 
steatosis. We calculated the FibrosScan-AST (FAST) 
score, which identifies the risk of progressive non-
alcoholic steatohepatitis (NASH) (positive predictive 
value (PPV) of 0·83 and a negative predictive 
value (NPV) of 0·85).8 Inclusion criteria included 
age of 18 years or older, residence in the Rio 
Grande Valley, and having four grandparents who 
are either Mexican or Mexican American.  
 
The Beck Depression Inventory-II (BDI-II) was used to 
assess the degree of depressive symptoms over two 
weeks. 17 The BDI-II assesses the severity of 
depression and is an acceptable screening 
instrument for depression when administered in both 
Spanish and English.17-20  
 
STATISTICAL ANALYSIS 
To test for gender differences in the variables, we 
used the non-parametric Mann-Whitney-Wilcoxon 
test which is robust to non-normality in the data. We 
estimated heritabilities (h2) and genotype x 
environment interaction using a variance component 
approach as implemented in the computer program 
SOLAR. http://solar-eclipse-genetics.org/brief-
overview.html. Each liver-related phenotype (AST, 
ALT, AST/ALT, and FAST) was regressed against 
age, sex, age-squared, sex-by-age, and sex-by-
age-squared, and then the regression residuals 
derived for each trait were normalized using an 
inverse normal transformation.21 

https://esmed.org/MRA/index.php/mra/article/view/4408
http://solar-eclipse-genetics.org/brief-overview.html
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GENOTYPE-BY ENVIRONMENT (G X E) 
INTERACTION MODEL FOR CONTINUOUS 
ENVIRONMENTS 
The base model—known as the polygenic model—
is used to obtain estimates of liver trait heritabilities 
and as a model reference point upon which complex 
models can be elaborated. For a sample of related 
individuals, the polygenic model posits that the 
phenotypic covariance is decomposable into 
additive genetic and residual environmental 
variance components, and that inter-individual 
covariances will be given strictly by the additive 
genetic variance weighted by the genetic 
relatedness coefficient, assuming (for genetic 
covariance) that the pairwise genetic correlation 
across environments is unity, and that the additive 
genetic variance is homogeneous. Under the G x E 
model, we relax these assumptions by expressing 
both the additive genetic variance and genetic 
correlations as continuous functions of a specific 
environment (e.g., extent of depressive symptoms) 
to capture any potential interaction between the 
genetic effects (i.e., the additive genetic variance 
and/or genetic correlation) and the specific 
environment. The null hypothesis is that the 
expression of the aggregate of all genotypes 
underlying a phenotype (polygenotype) is 
independent of the specific environment. Rejection 
of the null hypothesis implies that the genotype-
phenotype map for the trait in question depends on 
a specific environment or is a function of the specific 
environment. We begin to study the problem of the 
genotype-phenotype map potentially being 
dependent on the environment by modeling the GxE 
interaction variance. The GxE interaction variance is 
zero if the following two conditions are 
simultaneously true: (1) homogeneity of the additive 

genetic variance across environments: σ2g1 = σ2g2 = 

σ2g, where σ2g1 and σ2g2 are the additive genetic 

variance in environments 1 and 2, respectively; 2) 
complete pleiotropy (i.,e, the same genes are active 
across environments) in which the genetic correlation 

(ρg) is one across environments: ρg = 1. There is 

evidence of GxE if either null hypothesis is 
rejected.22  Rejection of either or both is evidence 
that the phenotypic response to the environment has 
a genetic basis. 
 
We modeled the genetic variance and cross-
environment genetic correlation as functions of 
depression, where the quantitative measure of 
depression is given as the total score on the BDI-II. 
Since it is likely that our focal environment is also 
influenced by genetic factors, we first tested for 
genetic factors underlying the BDI-II measure of 
depression and observed a significant heritability 
of 0.38 (p<1.0x10-5). Because we are interested in 

the purely environmental component of depression, 
we computed a prediction of the associated genetic 
values using Best Linear Unbiased Prediction (BLUP) 
methods. BLUP accounts for additive genetic and 
environmental covariances among relatives based 
on known pedigree structure.23 We then subtracted 
the BLUP genetic values for BDI from the original 
(BDI-derived) depression variable to get a BLUP-
computed depression variable that reflects 
primarily environmental effects.23 This lattermost 
variable is the focal (genetically corrected) 
environment in our GxE model.  
 
For the genetic variance function (and similarly for 
the environmental variance), we modeled the 
variance using an exponential function of 
depression, where the exponential function 
maintains positivity, which is required of a 

variance24 (σ2g = exp [αg+ γg (BDI)], where αg and 

γg are parameters to be estimated. Taking the 

natural logarithm of the exponential function, the 
variance homogeneity null hypothesis holds for a 

slope-term equal to 0: γg = 0. The genetic 

correlation was modeled using the exponential 
decay function of the pairwise differences in BDI 

scores: ρg = exp [−λ|BDIx − BDIz|] where BDIx and 

BDIz are the values of the BDI for any two 
individuals x and z. The null hypothesis that the 

genetic correlation is equal to 1 is equivalent to λ = 

0 because in this event: ρg = exp [−λ|BDIx − BDIz|] 

= e0 = 1. 
 
We carried out model evaluations and hypothesis 
testing in two stages. In stage one, we examined if 
the overall G × E interaction model provided a 
better fit to the data when compared with the 
polygenic model by way of a likelihood ratio test 
(LRT). It is important to note that the polygenic 
model is fully nested within the G × E interaction 
model and that relative to the polygenic model, the 
G × E interaction model has three additional 

parameters (γg, γe, and λ; αg and αe are re-

parameterized versions of the variances). The LRT 
statistic for this comparison is distributed as a 50:50 
mixture of chi-squares with 2 and 3 degrees of 
freedom (df).21,22,25  
 
In the second stage, we examine the more specific 
G × E interaction hypotheses. The full G × E model 
with all parameters estimated was compared with 

models when either gamma (γ) or lambda (λ) was 

constrained to 0 to respectively test the hypotheses 
of additive genetic variance homogeneity and a 
genetic correlation equal to one. The distributions of 
the LRT statistics are, respectively, a chi-square with 
1 df, and a 50:50 mixture of a chi-square with a 
point mass at 0 and a chi-square with 1 df.15,21 As 

https://esmed.org/MRA/index.php/mra/article/view/4408
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part of this stage, we determined if each of the 
three additional parameters in the full G × E 

interaction model (γg, γe, and λ) should even be 

included at all by comparing its maximum likelihood 
estimate (MLE) to its standard error (SE). A 
parameter is roughly significant if its MLE is greater 
than twice its SE based on likelihood theory. 
Therefore, if a parameter SE was greater than its 
MLE, we judged that parameter to be statistically 
unimportant. Further, the additional parameters 
were formally tested by the tests mentioned above. 
If any of the three additional parameters were 
found to have SEs greater than their MLEs and if 

these were found to be formally insignificant, we 
then compared a reduced version of the G × E 
interaction model to the polygenic model, excluding 
the insignificant parameters. 
 

Results 
The demographic characteristics (age, AST, ALT, 
AST/ALT ratio, and FAST, BDI-II) by sex of the 
cohort are listed in Table 1. There were no 
significant differences between age for males and 
females, but there are differences for AST, ALT, 
AST/ALT ratio, and FAST scores as inferred from the 
Mann-Whitney Wilcoxon tests.   

 
Table 1: Demographic characteristics of the sample 

Trait Females  N=391 Males  N=134 

 Mean SD Mean SD 

Age 44.33 14.76 45.96 15.70 

AST 19.88 15.99 25.67 19.99 

ALT 22.18 24.05 33.00 31.53 

AST/ALT Ratio 1.17 0.66 1.00 0.63 

FAST 0.13 0.19 0.18 0.21 

BDI-II 6.99 8.25 4.64 6.60 

All 6 variables were tested for differences across AST, ALT, AST/ALT ratio, and FAST scores as inferred from 
the Mann-Whitney Wilcoxon tests.   
 
HERITABILITY 
Data from 525 individuals were analyzed. As 
reported in Table 2, we found statistically 
significant moderate heritabilities for AST (h2 =.25, 
p=0.03), ALT (h2 = 0.41, p= 81E-04), AST/ALT (h2 

=0.26; p=0.004), and FAST (h2 =0.36; p=15E-03), 
and BDI (h=.37; p=7.8E-06). We formally 
compared the full G × E interaction model to the 
polygenic model for AST, ALT, AST/ALT ratio, and 
FAST score (Table 3).  

 
Table 2: Heritability analysis of transaminases and FAST score variables 

Trait Heritability Standard Error Sample Size p-value 

AST 0.25 0.14 525 0.03 

ALT 0.41 0.13 525 81E-04 

AST/ALT Ratio 0.26 0.10 525 .004 

FAST 0.36 0.12 475 .15E-03 

BDI-II 0.37 0.10 525 7.8E-06 

 
 
Table 3: Testing the full G × E interaction model against the polygenic model 

Trait Model Ln likelihood Chi-square p-value 

AST Polygenic -255.29 1.68 0.54 

 Full GxE -254.45   

ALT Polygenic -252.41 1.92 0.49 

 Full GxE -251.45   

AST/ALT Polygenic -253.92 16.19 6.7E-4 

 Full GxE -245.82   

FAST Polygenic -138.96 2.30 0.41 

 Full GxE -137.81   

It is important to note that full G × E interaction 
model has three additional parameters of interest 
compared to the basal polygenic model, one of 
which has a null hypothesis on the boundary of its 

permissible parameter space. For this reason, the 
formal comparison gives a 50:50 mixture of chi-
squares with 2 and 3 degrees of freedom (df). To 
ensure best-model selection, we took under 

https://esmed.org/MRA/index.php/mra/article/view/4408
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consideration that the two slope parameters, which 
allow for genetic and environmental variance 
heterogeneity, both had standard errors larger 
than their respective maximum likelihood estimates 
(MLEs), whereas the MLE for the genetic correlation 
decay parameter was larger than its standard 
error. 

Formal 1 df testing of the genetic and 
environmental variance heterogeneity parameters 
showed that AST, ALT, and FAST were not 
significant. Results for AST/ALT ratio are 
demonstrated in Table 4. The additive genetic 
variance decreased with an increased BDII-II 
environment. 
 

Table 4: Testing the critical parameters of the full G × E interaction model for AST/ALT 

Model Ln likelihood Chi-square p-value 

Constrained genetic slope -248.02 4.40 0.04 

Constrained environmental slope -246.96 2.28 0.13 

Constrained genetic correlation decay -250.18 0.00 0.50 

Full G × E interaction model -245.82 N/A N/A 

Discussion 
Mexican Americans are carriers of chronic disease 
risk alleles, including obesity, NAFLD, diabetes, and 
cardiovascular disease.15,26,27 There is evidence of 
an interaction between genes and NAFLD in 
Mexican Americans.15 This study adds several key 
additional contributions. Firstly, this is a large, 
robust to population stratification, family-based 
design, with the ability to perform genetic analyses 
that cannot be accomplished with a sample of 
unrelated individuals.28 Using variance component 
models, likelihood-based statistical inference, and a 
BLUP-computed depression model, we identified 
significant GxE interaction variance. We also 
confirmed that the AST/ALT ratio and the BDI-II are 
heritable, 29-35 and discovered a new finding that 
the FAST score is also moderately heritable. 
Depression influences genes underlying the 
expression of the AST/ALT ratio. Notably, there is 
a decrease in additive genetic variance with higher 
AST/ALT levels, suggesting a decrease in GXE 
interaction with increased depression measured by 
BDI-II. 
 
The role of depression in the pathophysiology of 
liver disease garners significant attention.36 Using a 
meta-analysis, Xiao et al. demonstrated that 
patients with non-alcoholic steatohepatitis have a 
significantly higher prevalence of depression than 
patients with NAFLD (RR: 2.83, p <0.001), and 
there is a shared association between both 
conditions.37 Risk factors for NAFLD include obesity, 
diabetes, hyperlipidemia, and female gender.38,39 
We found consistent evidence of GxE effects for 
AST/ALT ratio and depression, commensurate with 
previous findings that the variation in hepatic 
transaminases is, in part, genetically 
determined.31,32,35 Sutoh et al. found that alcohol 
increased the AST/ALT ratio through reduced ALT 
levels without AST change in middle-aged 
Japanese men with the ALDH2 genotype.40 ALT is 
especially useful as a clinical laboratory marker 

associated with  drug hepatotoxicity, hepatocellular 
death, and  fatty degeneration. ALT can be 
influenced by age, sex, dietary change, 
geographical location, ethnicity, obesity, and 
marital status. Human isozymes are located in the 
cytosol and mitochondria.  Mitochondrial ALT is not 
present in normal human serum and is the most 
important indicator of hepatocellular injury.41 AST is 
found in the cytosol and mitochondria of 
hepatocytes, but also in skeletal muscle, kidney, and 
pancreas. Approximately 80% of 60-70% of AST 
activity in hepatocytes is in the mitochondria. AST is 
an indicator of mitochondrial damage.41   
 
The hepatic transaminases, especially the AST/ALT 
ratio, are widely used to evaluate the risk of fatty 
infiltration and fibrosis.42,43 Why there is a gene-
by-environment interaction between genes 
underlying the AST/ALT ratio that is influenced by 
(decreased additive variance) with increased 
depression) could be related to genes underlying 
the cellular sources of AST and ALT. The underlying 
genetic influence on AST and ALT may affect 
different cellular processes. Clinicians use measures 
of liver health to help identify risk, disease, and 
etiology. Our findings support an underlying 
genetic influence on transaminases that theoretically 
vary according to impact on cellular physiology.  
 
Increased expression of inflammatory pathways 
may explain the NAFLD-depression interaction.44,45 
Growing evidence supports NAFLD as a metabolic 
companion of psychiatric disorders with common 
shared inflammatory pathways.46-50 NAFLD and 
depression are involved in a complex system with 
shared pathogenesis mediated by inflammatory 
dysregulation, oxidative stress pathways, and 
mitochondrial dysfunction (metabolic and-
inflammatory effectors).49,50 Our team is 
investigating which genetic transcripts are involved 
in NAFLD in the face of depression. The results will 
provide more information regarding the role of 

https://esmed.org/MRA/index.php/mra/article/view/4408
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inflammation at the cellular level, how clinical 
measures of liver health such as VCTE, FAST score, 
and hepatic transaminase results are related to 
liver health, and how the environment modulates the 
underlying genetic response. 
 

Implications for Research 
Measurement of transaminases and the FibroScan-
AST score are commonly used to diagnose and 
determine the progression of NAFLD. The 
determinants of decreased reliability of Liver 
stiffness measurement (LSM) include older age, 
obesity, higher liver stiffness, and operator 
experience, which may contribute to the results of 
the FAST score. Our findings show that a set of 
genes influences the expression of the AST/ALT 
ratio and not the individual transaminases or the 
FAST score. The AST/ALT ratio may be a more 
sensitive test than the individual transaminases, and 
therefore there is more power to detect differences 
(effect size), or our population may have varying 
exposure to liver toxins. Our focus is on Mexican 
Americans, and future research will determine if the 
finding of genotype by environment interaction 

effects between NAFLD and depression is 
replicated in other populations. 

 

Conclusions 
We examined potential G x E interaction using 
variance component models and likelihood-based 
statistical inference in the phenotypic expression of 
NAFLD, focusing on liver transaminases and the 
FAST score. Clinicians routinely use both measures, 
and are cost-effective and non-invasive. We 
assessed depression (environment) using the Beck 
Depression Inventory-II and identified significant G 
x E interactions of AST/ALT in response to 
depression. We confirmed earlier reports of the 
heritability of hepatic transaminases and the BDI-II 
in Mexican Americans. We also determined the 
heritability of the FAST score. We are currently 
investigating the nature of the interactions and the 
specific genes involved.  
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