28 research outputs found

    3D HIGH-QUALITY MODELING OF SMALL AND COMPLEX ARCHAEOLOGICAL INSCRIBED OBJECTS: RELEVANT ISSUES AND PROPOSED METHODOLOGY

    Get PDF
    3D modelling of inscribed archaeological finds (such as tablets or small objects) has to consider issues related to the correct acquisition and reading of ancient inscriptions, whose size and degree of conservation may vary greatly, in order to guarantee the needed requirements for visual inspection and analysis of the signs. In this work, photogrammetry and laser scanning were tested in order to find the optimal sensors and settings, useful to the complete 3D reconstruction of such inscribed archaeological finds, paying specific attention to the final geometric accuracy and operative feasibility in terms of required sensors and necessary time. Several 3D modelling tests were thus carried out on four replicas of inscribed objects, which are characterized by different size, material and epigraphic peculiarities. Specifically, in relation to photogrammetry, different cameras and lenses were used and a robust acquisition setup, able to guarantee a correct and automatic alignment of images during the photogrammetric process, was identified. The focus stacking technique was also investigated. The Canon EOS 1200D camera equipped with prime lenses and iPad camera showed respectively the best and the worst accuracy. From an overall geometric point of view, 50 mm and 100 mm lenses achieved very similar results, but the reconstruction of the smallest details with the 50 mm lens was not appropriate. On the other hand, the acquisition time for the 50 mm lens was considerably lower than the 100 mm one. In relation to laser scanning, the ScanRider 1.2 model was used. The 3D models produced (in less time than using photogrammetry) clearly highlight how this scanner is able to reconstruct even the high frequencies with high resolution. However, the models in this case are not provided with texture. For these reasons, a robust procedure for integrating the texture of photogrammetry models with the mesh of laser scanning models was also carried out

    A high-resolution photogrammetric workflow based on focus stacking for the 3D modeling of small Aegean inscriptions

    Get PDF
    Any attempt of decipherment and language identification of the scripts from the Aegean dating to the second millennium BCE (namely Cretan Hieroglyphic, Linear A, and Cypro-Minoan) has relied, until today, on traditional catalogues of inscriptions, consisting of incomplete or subjective 2D representations, such as photographs and hand-drawn copies, which are not suitable for documenting such three-dimensional writing systems. In contrast, 3D models of the inscribed media allow for an accurate and objective “autopsy” of the entire surface of the inscriptions. In this context, this work presents an efficient, accurate, high-resolution, and high-quality texture photogrammetric workflow based on focus-stacked macro images, designed for the 3D modeling of small Aegean inscriptions, to properly reconstruct their geometry and to enhance the identification of their signs, making their transcription as unbiased as possible. The pipeline we propose also benefits from a pre-processing stage to remove any coloration difference from the images, and a reliable and simple 3D scaling procedure. We tested this workflow on six inscribed artifacts (two in Cretan Hieroglyphic, three in Linear A, one of uncertain affiliation), whose average size ranges approximately from 1 to 3 cm. Our results show that this workflow achieved an accuracy of a few hundredths of mm, comparable to the technical specifications of standard commercial 3D scanners. Moreover, the high 3D density we obtained (corresponding to the edge average length of the 3D model mesh), up to ≈ 30 µm, allowed us to reconstruct even the smallest details of the inscriptions, both in the mesh and in the texture layer of the 3D models

    A case of dengue type 3 virus infection imported from Africa to Italy, October 2009.

    Get PDF
    In October 2009, a traveller returning from Africa to Italy was hospitalised with symptoms suggestive of a haemorrhagic fever of unknown origin. The patient was immediately placed in a special biocontainment unit until laboratory investigations confirmed the infection to be caused by a dengue serotype 3 virus. This case reasserts the importance of returning travellers as sentinels of unknown outbreaks occurring in other countries, and highlights how the initial symptoms of dengue fever resemble those of other haemorrhagic fevers, hence the importance of prompt isolation of patients until a final diagnosis is reached

    Immunogenicity of viral vaccines in the italian military

    Get PDF
    Military personnel of all armed forces receive multiple vaccinations and have been doing so since long ago, but relatively few studies have investigated the possible negative or positive interference of simultaneous vaccinations. As a contribution to fill this gap, we analyzed the response to the live trivalent measles/mumps/rubella (MMR), the inactivated hepatitis A virus (HAV), the inactivated trivalent polio, and the trivalent subunits influenza vaccines in two cohorts of Italian military personnel. The first cohort was represented by 108 students from military schools and the second by 72 soldiers engaged in a nine-month mission abroad. MMR and HAV vaccines had never been administered before, whereas inactivated polio was administered to adults primed at infancy with a live trivalent oral polio vaccine. Accordingly, nearly all subjects had baseline antibodies to polio types 1 and 3, but unexpectedly, anti-measles/-mumps/-rubella antibodies were present in 82%, 82%, and 73.5% of subjects, respectively (43% for all of the antigens). Finally, anti-HAV antibodies were detectable in 14% and anti-influenza (H1/H3/B) in 18% of the study population. At mine months post-vaccination, 92% of subjects had protective antibody levels for all MMR antigens, 96% for HAV, 69% for the three influenza antigens, and 100% for polio types 1 and 3. An inverse relationship between baseline and post-vaccination antibody levels was noticed with all the vaccines. An excellent vaccine immunogenicity, a calculated long antibody persistence, and apparent lack of vaccine interference were observed

    Aortic stiffness is associated with cardiac function and cerebral small vessel disease in patients with type 1 diabetes mellitus: assessment by magnetic resonance imaging

    Get PDF
    To evaluate, with the use of magnetic resonance imaging (MRI), whether aortic pulse wave velocity (PWV) is associated with cardiac left ventricular (LV) function and mass as well as with cerebral small vessel disease in patients with type 1 diabetes mellitus (DM). We included 86 consecutive type 1 DM patients (49 male, mean age 46.9 +/- 11.7 years) in a prospective, cross-sectional study. Exclusion criteria included aortic/heart disease and general MRI contra-indications. MRI of the aorta, heart and brain was performed for assessment of aortic PWV, as a marker of aortic stiffness, systolic LV function and mass, as well as for the presence of cerebral white matter hyperintensities (WMHs), microbleeds and lacunar infarcts. Multivariate linear or logistic regression was performed to analyse the association between aortic PWV and outcome parameters, with covariates defined as age, gender, mean arterial pressure, heart rate, BMI, smoking, DM duration and hypertension. Mean aortic PWV was 7.1 +/- 2.5 m/s. Aortic PWV was independently associated with LV ejection fraction ( = -0.406, P = 0.006), LV stroke volume ( = -0.407, P = 0.001), LV cardiac output ( = -0.458, P = 0.001), and with cerebral WMHs (P < 0.05). There were no independent associations between aortic stiffness and LV mass, cerebral microbleeds or lacunar infarcts. Aortic stiffness is independently associated with systolic LV function and cerebral WMHs in patients with type 1 DM.Neuro Imaging Researc

    3D MODELLING BY LOW-COST RANGE CAMERA: SOFTWARE EVALUATION AND COMPARISON

    No full text
    The aim of this work is to present a comparison among three software applications currently available for the Occipital Structure SensorTM; all these software were developed for collecting 3D models of objects easily and in real-time with this structured light range camera. The SKANECT, itSeez3D and Scanner applications were thus tested: a DUPLOTM bricks construction was scanned with the three applications and the obtained models were compared to the model virtually generated with a standard CAD software, which served as reference. The results demonstrate that all the software applications are generally characterized by the same level of geometric accuracy, which amounts to very few millimetres. However, the itSeez3D software, which requires a payment of $7 to export each model, represents surely the best solution, both from the point of view of the geometric accuracy and, mostly, at the level of the color restitution. On the other hand, Scanner, which is a free software, presents an accuracy comparable to that of itSeez3D. At the same time, though, the colors are often smoothed and not perfectly overlapped to the corresponding part of the model. Lastly, SKANECT is the software that generates the highest number of points, but it has also some issues with the rendering of the colors

    POSE-ID-on—A Novel Framework for Artwork Pose Clustering

    No full text
    In this work, we focus our attention on the similarity among works of art based on human poses and the actions they represent, moving from the concept of Pathosformel in Aby Warburg. This form of similarity is investigated by performing a pose clustering of the human poses, which are modeled as 2D skeletons and are defined as sets of 14 points connected by limbs. To build a dataset of properly annotated artwork images (that is, including the 2D skeletons of the human figures represented), we relied on one of the most popular, recent, and accurate deep learning frameworks for pose tracking of human figures, namely OpenPose. To measure the similarity between human poses, two alternative distance functions are proposed. Moreover, we developed a modified version of the K-Medians algorithm to cluster similar poses and to find a limited number of poses that are representative of the whole dataset. The proposed approach was also compared to two popular clustering strategies, that is, K-Means and the Nearest Point Algorithm, showing higher robustness to outliers. Finally, we assessed the validity of the proposed framework, which we named POSE-ID-on, in both a qualitative and in a quantitative way by simulating a supervised setting, since we lacked a proper reference for comparison

    A high-resolution photogrammetric workflow based on focus stacking for the 3D modeling of small Aegean inscriptions

    No full text
    Any attempt of decipherment and language identification of the scripts from the Aegean dating to the second millennium BCE (namely Cretan Hieroglyphic, Linear A, and Cypro-Minoan) has relied, until today, on traditional catalogues of inscriptions, consisting of incomplete or subjective 2D representations, such as photographs and hand-drawn copies, which are not suitable for documenting such three-dimensional writing systems. In contrast, 3D models of the inscribed media allow for an accurate and objective “autopsy” of the entire surface of the inscriptions. In this context, this work presents an efficient, accurate, high-resolution, and high-quality texture photogrammetric workflow based on focus-stacked macro images, designed for the 3D modeling of small Aegean inscriptions, to properly reconstruct their geometry and to enhance the identification of their signs, making their transcription as unbiased as possible. The pipeline we propose also benefits from a pre-processing stage to remove any coloration difference from the images, and a reliable and simple 3D scaling procedure. We tested this workflow on six inscribed artifacts (two in Cretan Hieroglyphic, three in Linear A, one of uncertain affiliation), whose average size ranges approximately from 1 to 3 cm. Our results show that this workflow achieved an accuracy of a few hundredths of mm, comparable to the technical specifications of standard commercial 3D scanners. Moreover, the high 3D density we obtained (corresponding to the edge average length of the 3D model mesh), up to ≈ 30 µm, allowed us to reconstruct even the smallest details of the inscriptions, both in the mesh and in the texture layer of the 3D models

    Orthoimage Generation by GÖKTÜRK-1: A Test Case in Rome

    No full text
    The paper presents a first evaluation of the potentialities of the imagery acquired by the GÖKTÜRK-1 satellite for the generation of orthoimages. Starting from a stereo pair captured over Rome (Italy), two orthoimages were generated with the Free and Open Source Software DATE developed at the Geodesy and Geomatics Division, Sapienza University of Rome. The two orthoimages were compared to a map of Rome at 1:2000 scale: only translations in the East and North directions were detected as geolocation errors, compliant with the expected geolocation accuracy of GÖKTÜRK-1 (CE90 of 10 m with no Ground Control Points). Specifically, an East bias of approximately -8 m was found for both the orthoimages, whereas a North bias of 1 m was detected for the quasi nadiral image and a much higher North bias of -7 m was observed for the second image, displaying an off-nadir angle of about 25 degrees. These geolocation errors can be in principle corrected using just one Ground Control Point, enabling the production of orthophoto maps at 1:5000 scale from GÖKTÜRK-1 pseudo-nadiral imagery

    The s.c. 'hairy polyp' or 'dermoid' of the nasopharynx. (An unusual observation in older age).

    No full text
    A case of 'hairy polyp' or 'dermoid' of the nasopharynx in a 71-year-old man is described. This tumor-like condition is usually discovered at birth or during the first years of life. The oldest patient previously recorded in the literature was a 66-year-old man. The occurrence of such masses in older patients suggests that the condition is a malformation and not a neoplasm
    corecore