4 research outputs found
Localization of mobile robots in mutual cooperation by observing distributed state
On étudie dans cette thèse des méthodes de localisation coopérative de robots mobiles sans utilisation de mesures extéroceptives relatives, comme des angles ou des distances entre robots. Les systèmes de localisation considérés sont basés sur des mesures de radionavigation sur des balises fixes ou des satellites. Pour ces systèmes, on observe en général un écart entre la position observée et la position réelle. Cet écart systématique (appelé biais) peut être dû à une mauvaise position de la balise ou à une différence entre la propagation réelles des ondes électromagnétiques par rapport aux conditions standard utilisées pour établir les modèles d’observation. L’influence de ce biais sur la localisation des robots est non négligeable. La coopération et l’échange de données entre les robots (estimations des biais, estimations des positions et données proprioceptives) est une approche qui permet de corriger ces erreurs systématiques. La localisation coopérative par échange des estimations est sujette aux problèmes de consanguinité des données qui peuvent engendrer des résultats erronés, en particulier trop confiants. Lorsque les estimations sont utilisées pour la navigation autonome à l’approche, on doit éviter tout risque de collision qui peut mettre en jeu la sécurité des robots et des personnes aux alentours. On doit donc avoir recours à un mécanisme d’intégrité vérifiant que l’erreur commise reste inférieure à une erreur maximale tolérable pour la mission. Dans un tel contexte, il est nécessaire de caractériser des domaines de confiance fiables contenant les positions des robots mobiles avec une forte probabilité. L’utilisation des méthodes ensemblistes à erreurs bornées est considérée alors comme une solution efficace. En effet, ce type d’approche résout naturellement le problème de consanguinité des données et fournit des domaines de confiance fiables. De surcroît, l’utilisation de modèles non-linéaires ne pose aucun problème de linéarisation. Après avoir modélisé un système coopératif de nr robots avec des mesures biaisées sur des balises, une étude d’observabilité est conduite. Deux cas sont considérés selon la nature des mesures brutes des observations. En outre, des conditions d’observabilité sont démontrées. Un algorithme ensembliste de localisation coopérative est ensuite présenté. Les méthodes considérées sont basées sur la propagation de contraintes sur des intervalles et l’inversion ensembliste. La coopération est effectuée grâce au partage des positions estimées, des biais estimés et des mesures proprioceptives.L’échange des estimations de biais permet de réduire les incertitudes sur les positions des robots. Dans un cadre d’étude simple, la faisabilité de l’algorithme est évaluée grâce à des simulations de mesures de distances sur balises en utilisant plusieurs robots. La coopération est comparée aux méthodes non coopératives. L’algorithme coopératif ensembliste est ensuite testé sur des données réelles en utilisant deux véhicules. Les performances de la méthode ensembliste coopérative sont enfin comparées avec deux méthodes Bayésiennes séquentielles, notamment une avec fusion par intersection de covariance. La comparaison est conduite en termes d’exactitude et d’incertitude.In this work, we study some cooperative localization issues for mobile robotic systems that interact with each other without using relative measurements (e.g. bearing and relative distances). The considered localization technologies are based on beacons or satellites that provide radio-navigation measurements. Such systems often lead to offsets between real and observed positions. These systematic offsets (i.e, biases) are often due to inaccurate beacon positions, or differences between the real electromagnetic waves propagation and the observation models. The impact of these biases on robots localization should not be neglected. Cooperation and data exchange (estimates of biases, estimates of positions and proprioceptive measurements) reduce significantly systematic errors. However, cooperative localization based on sharing estimates is subject to data incest problems (i.e, reuse of identical information in the fusion process) that often lead to over-convergence problems. When position information is used in a safety-critical context (e.g. close navigation of autonomous robots), one should check the consistency of the localization estimates. In this context, we aim at characterizing reliable confidence domains that contain robots positions with high reliability. Hence, set-membership methods are considered as efficient solutions. This kind of approach enables merging adequately the information even when it is reused several time. It also provides reliable domains. Moreover, the use of non-linear models does not require any linearization. The modeling of a cooperative system of nr robots with biased beacons measurements is firstly presented. Then, we perform an observability study. Two cases regarding the localization technology are considered. Observability conditions are identified and demonstrated. We then propose a set-membership method for cooperativelocalization. Cooperation is performed by sharing estimated positions, estimated biases and proprioceptive measurements. Sharing biases estimates allows to reduce the estimation error and the uncertainty of the robots positions. The algorithm feasibility is validated through simulation when the observations are beacons distance measurements with several robots. The cooperation provides better performance compared to a non-cooperative method. Afterwards, the cooperative algorithm based on set-membership method is tested using real data with two experimental vehicles. Finally, we compare the interval method performance with a sequential Bayesian approach based on covariance intersection. Experimental results indicate that the interval approach provides more accurate positions of the vehicles with smaller confidence domains that remain reliable. Indeed, the comparison is performed in terms of accuracy and uncertainty
Localisation de robots mobiles en coopération mutuelle par observation d'état distribuée
In this work, we study some cooperative localization issues for mobile robotic systems that interact with each other without using relative measurements (e.g. bearing and relative distances). The considered localization technologies are based on beacons or satellites that provide radio-navigation measurements. Such systems often lead to offsets between real and observed positions. These systematic offsets (i.e, biases) are often due to inaccurate beacon positions, or differences between the real electromagnetic waves propagation and the observation models. The impact of these biases on robots localization should not be neglected. Cooperation and data exchange (estimates of biases, estimates of positions and proprioceptive measurements) reduce significantly systematic errors. However, cooperative localization based on sharing estimates is subject to data incest problems (i.e, reuse of identical information in the fusion process) that often lead to over-convergence problems. When position information is used in a safety-critical context (e.g. close navigation of autonomous robots), one should check the consistency of the localization estimates. In this context, we aim at characterizing reliable confidence domains that contain robots positions with high reliability. Hence, set-membership methods are considered as efficient solutions. This kind of approach enables merging adequately the information even when it is reused several time. It also provides reliable domains. Moreover, the use of non-linear models does not require any linearization. The modeling of a cooperative system of nr robots with biased beacons measurements is firstly presented. Then, we perform an observability study. Two cases regarding the localization technology are considered. Observability conditions are identified and demonstrated. We then propose a set-membership method for cooperativelocalization. Cooperation is performed by sharing estimated positions, estimated biases and proprioceptive measurements. Sharing biases estimates allows to reduce the estimation error and the uncertainty of the robots positions. The algorithm feasibility is validated through simulation when the observations are beacons distance measurements with several robots. The cooperation provides better performance compared to a non-cooperative method. Afterwards, the cooperative algorithm based on set-membership method is tested using real data with two experimental vehicles. Finally, we compare the interval method performance with a sequential Bayesian approach based on covariance intersection. Experimental results indicate that the interval approach provides more accurate positions of the vehicles with smaller confidence domains that remain reliable. Indeed, the comparison is performed in terms of accuracy and uncertainty.On étudie dans cette thèse des méthodes de localisation coopérative de robots mobiles sans utilisation de mesures extéroceptives relatives, comme des angles ou des distances entre robots. Les systèmes de localisation considérés sont basés sur des mesures de radionavigation sur des balises fixes ou des satellites. Pour ces systèmes, on observe en général un écart entre la position observée et la position réelle. Cet écart systématique (appelé biais) peut être dû à une mauvaise position de la balise ou à une différence entre la propagation réelles des ondes électromagnétiques par rapport aux conditions standard utilisées pour établir les modèles d’observation. L’influence de ce biais sur la localisation des robots est non négligeable. La coopération et l’échange de données entre les robots (estimations des biais, estimations des positions et données proprioceptives) est une approche qui permet de corriger ces erreurs systématiques. La localisation coopérative par échange des estimations est sujette aux problèmes de consanguinité des données qui peuvent engendrer des résultats erronés, en particulier trop confiants. Lorsque les estimations sont utilisées pour la navigation autonome à l’approche, on doit éviter tout risque de collision qui peut mettre en jeu la sécurité des robots et des personnes aux alentours. On doit donc avoir recours à un mécanisme d’intégrité vérifiant que l’erreur commise reste inférieure à une erreur maximale tolérable pour la mission. Dans un tel contexte, il est nécessaire de caractériser des domaines de confiance fiables contenant les positions des robots mobiles avec une forte probabilité. L’utilisation des méthodes ensemblistes à erreurs bornées est considérée alors comme une solution efficace. En effet, ce type d’approche résout naturellement le problème de consanguinité des données et fournit des domaines de confiance fiables. De surcroît, l’utilisation de modèles non-linéaires ne pose aucun problème de linéarisation. Après avoir modélisé un système coopératif de nr robots avec des mesures biaisées sur des balises, une étude d’observabilité est conduite. Deux cas sont considérés selon la nature des mesures brutes des observations. En outre, des conditions d’observabilité sont démontrées. Un algorithme ensembliste de localisation coopérative est ensuite présenté. Les méthodes considérées sont basées sur la propagation de contraintes sur des intervalles et l’inversion ensembliste. La coopération est effectuée grâce au partage des positions estimées, des biais estimés et des mesures proprioceptives.L’échange des estimations de biais permet de réduire les incertitudes sur les positions des robots. Dans un cadre d’étude simple, la faisabilité de l’algorithme est évaluée grâce à des simulations de mesures de distances sur balises en utilisant plusieurs robots. La coopération est comparée aux méthodes non coopératives. L’algorithme coopératif ensembliste est ensuite testé sur des données réelles en utilisant deux véhicules. Les performances de la méthode ensembliste coopérative sont enfin comparées avec deux méthodes Bayésiennes séquentielles, notamment une avec fusion par intersection de covariance. La comparaison est conduite en termes d’exactitude et d’incertitude
Mobile Robots Cooperation with Biased Exteroceptive Measurements
International audience—When mobile robots need to cooperate, mutual localization is a key issue. The objective is to enable cooperative localization capabilities, such that each robot determines the partners positions in a common frame with reliable confidence estimates. Exteroceptive sensors can measure distances to known beacons in order to provide absolute information. It often exists biases that affect these measurements because of particular environment conditions or because of an inaccurate knowledge of the beacons positions. In this work, each robot is also equipped with proprioceptive sensors, but no sensor can measure the inter-distance between the robots. The method that we consider is fully distributed between the robots, which share positions and biases estimates. In order to handle the data incest problem, we use constraint propagation techniques on intervals. The distributed cooperative localization method gives sets that always contain the true positions of the robots without any over-convergence. Simulation results show that the so-called method improves localization performance compared to standalone methods
Fluid flow simulation over complex shape objects using image processing to achieve mesh generation
International audienceIn the domain of flow simulation, avoiding the manual conception and numerisation of the domain can lead to the saving of a certain amount of time. Some processes, using heavy devices like LASER metrology, allow the numerical reconstruction of a real object. The aim of this paper is to propose a more simple tool requiring a commercial digital camera (like a smartphone), to transform a digital picture into a ready to use mesh. Besides simplicity, the tool has to be precise enough to bring accurate simulation results. Then, image processing object detection and reconstruction are used to generate a 2D mesh that can be integrated in a finite volume transient CFD simulation. Cars and airfoils are chosen as objects and the DNS fluid flow Gerris solver performs the simulations. After a validation on a circular shape object, simulations, conducted at different Reynolds number, provide accurate results plotting the Von Karman alley regime