1,115 research outputs found

    Cool White Dwarfs Revisited -- New Spectroscopy and Photometry

    Get PDF
    In this paper we present new and improved data on 38 cool white dwarfs identified by Oppenheimer et al. 2001 (OHDHS) as candidate dark halo objects. Using the high-res spectra obtained with LRIS, we measure radial velocities for 13 WDs that show an H alpha line. We show that the knowledge of RVs decreases the UV-plane velocities by only 6%. The radial velocity sample has a W-velocity dispersion of sig_W = 59 km/s--in between the values associated with the thick disk and the stellar halo. We also see indications for the presence of two populations by analyzing the velocities in the UV plane. In addition, we present CCD photometry for half of the sample, and with it recalibrate the photographic photometry of the remaining WDs. Using the new photometry in standard bands, and by applying the appropriate color-magnitude relations for H and He atmospheres, we obtain new distance estimates. New distances of the WDs that were not originally selected as halo candidates yield 13 new candidates. On average, new distances produce velocities in the UV plane that are larger by 10%, with already fast objects gaining more. Using the new data, while applying the same UV-velocity cut (94 km/s) as in OHDHS, we find a density of cool WDs of 1.7e-4 pc^-3, confirming the value of OHDHS. In addition, we derive the density as a function of the UV-velocity cutoff. The density (corrected for losses due to higher UV cuts) starts to flatten out at 150 km/s (0.4e-4 pc^-3), and is minimized (thus minimizing a possible non-halo contamination) at 190 km/s (0.3e-4 pc^-3). These densities are in a rough agreement with the estimates for the stellar halo WDs, corresponding to a factor of 1.9 and 1.4 higher values.Comment: Accepted to ApJ. New version contains some additional data. Results unchange

    Constraints on Cold H_2 Clouds from Gravitational Microlensing Searches

    Get PDF
    It has been proposed that the Galaxy might contain a population of cold clouds in numbers sufficient to account for a substantial fraction of the total mass of the Galaxy. These clouds would have masses of the order of 10^{-3} Solar mass and sizes of the order of 10 AU. We consider here the lensing effects of such clouds on the light from background stars. A semianalytical formalism for calculation of the magnification event rate produced by such gaseous lensing is developed, taking into account the spatial distribution of the dark matter in the Galaxy, the velocity distribution of the lensing clouds and source stars, and motion of the observer. Event rates are calculated for the case of gaseous lensing of stars in the Large Magellanic Cloud and results are directly compared with the results of the search for gravitational microlensing events undertaken by the MACHO collaboration. The MACHO experiment strongly constrains the properties of the proposed molecular clouds, but does not completely rule them out. Future monitoring programs will either detect or more strongly constrain this proposed population.Comment: 36 pages, 9 figures, 1 table, typos corrected, minor change

    Large Magellanic Cloud Microlensing Optical Depth with Imperfect Event Selection

    Full text link
    I present a new analysis of the MACHO Project 5.7 year Large Magellanic Cloud (LMC) microlensing data set that incorporates the effects of contamination of the microlensing event sample by variable stars. Photometric monitoring of MACHO LMC microlensing event candidates by the EROS and OGLE groups has revealed that one of these events is likely to be a variable star, while additional data has confirmed that many of the other events are very likely to be microlensing. This additional data on the nature of the MACHO microlensing candidates is incorporated into a simple likelihood analysis to derive a probability distribution for the number of MACHO microlens candidates that are true microlensing events. This analysis shows that 10-12 of the 13 events that passed the MACHO selection criteria are likely to be microlensing events, with the other 1-3 being variable stars. This likelihood analysis is also used to show that the main conclusions of the MACHO LMC analysis are unchanged by the variable star contamination. The microlensing optical depth toward the LMC is = 1.0 +/- 0.3 * 10^{-7}. If this is due to microlensing by known stellar populations, plus an additional population of lens objects in the Galactic halo, then the new halo population would account for 16% of the mass of a standard Galactic halo. The MACHO detection exceeds the expected background of 2 events expected from ordinary stars in standard models of the Milky Way and LMC at the 99.98% confidence level. The background prediction is increased to 3 events if maximal disk models are assumed for both the MilkyWay and LMC, but this model fails to account for the full signal seen by MACHO at the 99.8% confidence level.Comment: 20 pages, 2 postscript figues, accepted by Ap

    A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2

    Full text link
    We have performed a search for halo white dwarfs as high proper motion objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify 24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper motion objects are identified as strong white dwarf candidates on the basis of their position in a reduced proper motion diagram. We create a model of the Milky Way thin disk, thick disk and stellar halo and find that this sample of white dwarfs is clearly an excess above the < 2 detections expected from these known stellar populations. The origin of the excess signal is less clear. Possibly, the excess cannot be explained without invoking a fourth galactic component: a white dwarf dark halo. We present a statistical separation of our sample into the four components and estimate the corresponding local white dwarf densities using only the directly observable variables, V, V-I, and mu. For all Galactic models explored, our sample separates into about 3 disk white dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin and thick disk and the stellar and dark halo, and the subsequent calculation of the local densities are sensitive to the input parameters of our model for each Galactic component. Using the lowest mean mass model for the dark halo we find a 7% white dwarf halo and six times the canonical value for the thin disk white dwarf density (at marginal statistical significance), but possible systematic errors due to uncertainty in the model parameters likely dominate these statistical error bars. The white dwarf halo can be reduced to around 1.5% of the halo dark matter by changing the initial mass function slightly. The local thin disk white dwarf density in our solution can be made consistent with the canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion expande

    Photometric Confirmation of MACHO Large Magellanic Cloud Microlensing Events

    Full text link
    We present previously unpublished photometry of three Large Magellanic Cloud (LMC) microlensing events and show that the new photometry confirms the microlensing interpretation of these events. These events were discovered by the MACHO Project alert system and were also recovered by the analysis of the 5.7 year MACHO data set. This new photometry provides a substantial increase in the signal-to-noise ratio over the previously published photometry and in all three cases, the gravitational microlensing interpretation of these events is strengthened. The new data consist of MACHO-Global Microlensing Alert Network (GMAN) follow-up images from the CTIO 0.9 telescope plus difference imaging photometry of the original MACHO data from the 1.3m "Great Melbourne" telescope at Mt. Stromlo. We also combine microlensing light curve fitting with photometry from high resolution HST images of the source stars to provide further confirmation of these events and to show that the microlensing interpretation of event MACHO-LMC-23 is questionable. Finally, we compare our results with the analysis of Belokurov, Evans & Le Du who have attempted to classify candidate microlensing events with a neural network method, and we find that their results are contradicted by the new data and more powerful light curve fitting analysis for each of the four events considered in this paper. The failure of the Belokurov, Evans & Le Du method is likely to be due to their use of a set of insensitive statistics to feed their neural networks.Comment: 29 pages with 8 included postscript figures, accepted by the Astrophysical Journa

    On representations of the feasible set in convex optimization

    Full text link
    We consider the convex optimization problem min⁥{f(x):gj(x)≀0,j=1,...,m}\min \{f(x) : g_j(x)\leq 0, j=1,...,m\} where ff is convex, the feasible set K is convex and Slater's condition holds, but the functions gjg_j are not necessarily convex. We show that for any representation of K that satisfies a mild nondegeneracy assumption, every minimizer is a Karush-Kuhn-Tucker (KKT) point and conversely every KKT point is a minimizer. That is, the KKT optimality conditions are necessary and sufficient as in convex programming where one assumes that the gjg_j are convex. So in convex optimization, and as far as one is concerned with KKT points, what really matters is the geometry of K and not so much its representation.Comment: to appear in Optimization Letter

    The tris formulation of Fluorouracil is more cardiotoxic than the sodium-salt formulations

    Get PDF
    The cardiotoxicity of 5-fluorouracil (FU) was attributed to degradation compounds present in the injected vials, fluoroacetaldehyde (Facet) and fluoromalonaldehydic acid (FMald). FU-NaOH vials were much less cardiotoxic than FU-Tris vials on the isolated perfused rabbit heart model since Facet and FMald are stored in stable depot forms in FU-Tris vials whereas, in FU-NaOH vials, they are extensively transformed. Cardiotoxic fluoroacetate (FAG), coming from Facet metabolization, was found in urine of patients, with a ratio FAC /FU catabolites 10-30 fold lower in patients treated with FU-NaOH than in those treated with FU-Tris

    The Burst-Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China

    Get PDF
    Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth’s crust
    • 

    corecore