13 research outputs found

    Magnetic properties of La\u3csub\u3e0.60\u3c/sub\u3eSr\u3csub\u3e0.40\u3c/sub\u3eMnO\u3csub\u3e3\u3c/sub\u3e thin films on SrTiO\u3csub\u3e3\u3c/sub\u3e and buffered Si substrates with varying thickness

    Get PDF
    La0.60Sr0.40MnO3 (LSMO) thin films of varying thickness from 12 to 55 nm were deposited using the pulsed-laser deposition technique onto single-crystalline SrTiO3 (STO) and STO-buffered Si substrates. The T c of LSMO films grown on STO-buffered Si substrates decreases faster than films directly grown on STO with decreasing film thickness. The LSMO/STO film with thickness of 55 nm shows T c at about 360 K, which is close to the bulk value, whereas T c LSMO film on STO-buffered Si film of similar thickness is reduced to 320 K. This difference is attributed to the strain and interfacial disorders in LSMO film on STO/Si. The film surface morphology is influenced by the film thickness. Oxygenation of LSMO films on STO-buffered Si affects the T c minimally but improved the overall magnetization of the films due to better oxygenation, which is also the case for postannealing the sample at elevated temperatures. The thermomagnetic history effects observed in LSMO films of STO-buffered Si indicate the presence of inhomogeneity, mostly at the interface, which influences the magnetic properties significantly

    Magnetic properties of La 0.6 Sr 0.4 MnO 3 thin films on SrTiO 3 and buffered Si substrates with varying thickness

    Get PDF
    La0.60Sr0.40MnO3 (LSMO) thin films of varying thickness from 12 to 55 nm were deposited using the pulsed-laser deposition technique onto single-crystalline SrTiO3 (STO) and STO-buffered Si substrates. The Tc of LSMO filmsgrown on STO-buffered Si substrates decreases faster than films directly grown on STO with decreasing film thickness. The LSMO/STO film with thickness of 55 nm shows Tc at about 360 K, which is close to the bulk value, whereas TcLSMO film on STO-buffered Si film of similar thickness is reduced to 320 K. This difference is attributed to the strain and interfacial disorders in LSMO film on STO/Si. The filmsurface morphology is influenced by the film thickness. Oxygenation of LSMO films on STO-buffered Si affects the Tc minimally but improved the overall magnetization of the films due to better oxygenation, which is also the case for postannealing the sample at elevated temperatures. The thermomagnetic history effects observed in LSMO films of STO-buffered Si indicate the presence of inhomogeneity, mostly at the interface, which influences the magnetic properties significantly

    Oxide-based dilute ferromagnetic semiconductors: ZnMnO and Co:TiO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    We report on ferromagnetic properties of ZnMnO and Co:TiO2 films grown by pulsed laser deposition with varying growth conditions. We have demonstrated that ZnMnO films show ferromagnetic properties at room temperature. However, oxygen plays a dominant role in the occurrence of ferromagnetism. Introducing carriers into ZnMnO films did not improve the ferromagnetic properties. Our experimental results indicate that the mechanism for ferromagnetism lies, probably, within the perspective of charge transfer between Mn ions through oxygen. On the other hand, our experimental results suggest that the ferromagnetism in Co:TiO2 films is controlled by the presence of small metal Co2+ clusters in the rutile TiO2 matrix, which are mainly present at the interface and on the surface of the films

    Ferromagnetic resonance studies in ZnMnO dilute ferromagnetic semiconductors

    Get PDF
    We report on the ferromagnetic resonance studies on ZnMnO films grown by the pulsed-laser deposition technique. ZnMnO films were annealed in different atmospheres. The films grown and annealed in oxygen demonstrate ferromagnetic behavior at room temperature and below. However, annealing in either nitrogen or argon deteriorates the ferromagnetic response of the films. Further annealing the films in oxygen recovers the ferromagnetic response. Our results suggest that oxygen plays a major role for controlling the ferromagnetic properties in ZnMnO films

    Self-assembled nanocrystalline epitaxial manganite films on SrTiO\u3csub\u3e3\u3c/sub\u3e/Si heterostructures

    Get PDF
    We report the growth and magnetic characterizations of La0.7Ba0.3MnO3 and La0.7Sr0.3MnO3 films on SrTiO3-buffered Si (100) and Si (111) substrates by pulsed-laser deposition. The structural studies show the epitaxial nature of the films. The microscopic studies show that the films consist of nanocrystalline particles. All films display sharp magnetic and electrical transitions associated with the colossal magnetoresistance behavior at and above room temperature, illustrating the superior quality of the films

    Ferromagnetic properties of epitaxial manganite films on SrTiO\u3csub\u3e3\u3c/sub\u3e/Si heterostructures

    Get PDF
    We report on the magnetic properties of epitaxial La0.7Ba0.3MnO3 and La0.7Sr0.3MnO3 films on Si (100) and Si (111) substrates using SrTiO3 template layer, which demonstrate magnetic and electrical properties at and above room temperature. The magnetization data show magnetic transition and magnetic hysteresis at and above room temperature. The films show well-defined magnetic domains. The ferromagnetic resonance studies show anisotropic effects related to ferromagnetic properties of films. The smaller grain size of about 20 nm in manganite films on SrTiO3 /Si may be one of the reasons to minimize the strain effect through strain relaxation at the interface between SrTiO3and manganites through the formation of three-dimensional islands

    Ferromagnetism in nanocrystalline epitaxial Co:TiO\u3csub\u3e2\u3c/sub\u3e thin films

    Get PDF
    We report on the observation of remarkable room-temperature ferromagnetism in nanocrystalline epitaxial Co:TiO2 films grown on sapphire (0001) substrates by a pulsed-laser deposition technique using high-density targets. The films were characterized by x-ray measurements, atomic force microscopy, micro-Raman, electron-paramagnetic resonance, and magnetization studies. The films exhibit three-dimensional islandlike growth that contains nanocrystalline particles. Our experimental results suggest that the remarkable ferromagnetism in Co:TiO2 films is controlled either by the interstitial Co2+ ions or small clusters, which are mainly present at the interface and on the surface of the films. Our work clearly indicates that Co interstitials and nanoclusters cause room-temperature ferromagnetism in Co-doped TiO2
    corecore