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Lag oSt 40MnO; (LSMO) thin films of varying thickness from 12 to 55 nm were deposited using
the pulsed-laser deposition technique onto single-crystalline SrTiO; (STO) and STO-buffered Si
substrates. The 7. of LSMO films grown on STO-buffered Si substrates decreases faster than films
directly grown on STO with decreasing film thickness. The LSMO/STO film with thickness of 55
nm shows T, at about 360 K, which is close to the bulk value, whereas 7. LSMO film on
STO-buffered Si film of similar thickness is reduced to 320 K. This difference is attributed to the
strain and interfacial disorders in LSMO film on STO/Si. The film surface morphology is influenced
by the film thickness. Oxygenation of LSMO films on STO-buffered Si affects the 7,. minimally but
improved the overall magnetization of the films due to better oxygenation, which is also the case for
postannealing the sample at elevated temperatures. The thermomagnetic history effects observed in
LSMO films of STO-buffered Si indicate the presence of inhomogeneity, mostly at the interface,
which influences the magnetic properties significantly. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2833388]

I. INTRODUCTION

Doped perovskite manganites that show ferromagnetism
above room temperate1 have received a great deal of interest
because of their potential use for various device applications
such as infrared detectors, magnetic field sensors,z’3 and
high-density memory applications. In recent years, mangan-
ite films such as (La;_,Sr,)MnO; (LSMO) have stimulated
intense study due to their colossal magnetoresistance (CMR)
effect*” and spin-dependent tunneling, which makes them
attractive candidates for high-performance magnetic devices.
In particular, integrating LSMO onto Si, the essential mate-
rial of the semiconductor industry, is crucial in maximizing
their potential use. Among most of the electrofunctional per-
ovskite oxides, the characteristics of manganite compounds
are very sensitive to lattice distortion imposed by chemical
substitution or hydrostatic pressure. In the case of epitaxial
heterostructures, a biaxial strain is induced at the interface if
the lattice constant is different and the arrangement of atoms
is coherent to that of the substrate. On the other hand, the
strain relaxation of lattice mismatch between the film and the
substrate at the interfaces occurs as the film thickness in-
creases beyond a certain critical thickness of the film.°

The film grows coherently, storing the biaxial strain en-
ergy below a critical thickness (z,). Above 1., the elastic en-
ergy (due to the strain in the film, especially at the interface)

YAlso at Department of Engineering, Norfolk State University, 700 Park
Avenue, Norfolk, Virginia 23504, USA. Electronic  mail:
apradhan @nsu.edu.

0021-8979/2008/103(2)/023914/8/$23.00

103, 023914-1

in the strained film exceeds that in the core of misfit dislo-
cation which would be introduced at the film—substrate inter-
face. As a result, the film is relaxed to exhibit lattice constant
similar to the bulk sample. Understanding and controlling the
strain induced by lattice mismatching in perovskite mangan-
ites on their physical properties is crucial for realizing appli-
cations, because most applications demand ultrathin layers.
The physics and the application of the doped manganites in
magnetoresistive devices based on thin-film structures are
affected by the strong dependence of their properties on
strain’ ' and their unknown interface properties. Although
large effects due to volume preserving uniaxial strain are
expected due to the relevance of the Jahn—Teller effect,8 the
detailed effect of strain on the electrical transport and mag-
netic properties of the CMR materials, as well as the mag-
netic properties at interfaces in the doped manganites, are not
well understood so far. However, many proposed applica-
tions rely on thin-film structures where strain effects due to
lattice mismatch between film and substrate in most cases
cannot be avoided. Integrating the manganites onto the semi-
conducting materials such as Si remains a challenging task
for potential device applications that utilize both information
processing and data storage in the same device, and for de-
signs of artificial structures intended to integrate with main-
stream microelectronic devices based on growing perovskite
oxide thin films on conventional semiconductors. However,
there have been only a few reports on the fabrication and
understanding of these artificially designed structures based
on perovskite oxide thin films on silicon. In this paper, we

© 2008 American Institute of Physics
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report the fabrication of ultrathin films of LSMO grown on
single-crystalline SrTiO; (STO) and STO-buffered Si(100)
substrates with varying thickness. We demonstrate that 55
nm thick films show transition temperatures close to those of
bulk material. The reasons for the reduction of 7, with de-
creasing film thickness are illustrated, taking into account the
strain effects due to pseudomorphic growth of the films.

Il. EXPERIMENTAL

The Lag ¢S1r) 4MnOj thin films were grown by multitarget
pulsed-laser deposition (PLD) technique (KrF excimer (A
=248 nm), with a pulse energy density of 1-2 J/cm? and
utilizing both target rotation and rastering, and substrate ro-
tation facilities. Single-crystalline STO and high-density
LSMO targets were used. LSMO calcined powders were iso-
statically pressed at 400 MPa and sintered at 1450 (C in
order to make a high-density target). An STO substrate or an
STO template layer on Si has been chosen because of its low
(0.9%) lattice mismatch with LSMO which has the highest
bulk 7. The films were deposited on single-crystalline STO
(100) and STO-buffered Si(100) substrates with a substrate
temperature of 700—850 °C, keeping oxygen partial pres-
sure of 1-200 mTorr. The substrate was loaded to the cham-
ber using a load-lock facility attached to the chamber and
heated in the chamber at a rate of 20 °C/min just after the
ultimate base pressure of <3 X 10~® Torr to avoid the oxi-
dation of the Si substrate before depositing STO, as de-
scribed earlier.!” The films were cooled at a cooling rate of
10 °C/min in O, of 500 Torr partial pressure from the
growth temperature down to 300 °C, and then allowed to
cool naturally to room temperature. The thickness of the film
was precisely controlled by the number of pulses. The struc-
tural studies indicate that LSMO/STO films are highly epi-
taxial. Similarly, LSMO/STO/Si films are textured and ori-
ented. The films were postannealed at 850 °C for 2 h with a
heating and cooling rate of 10 °C/min.

Surface microstructure of the films was analyzed by
atomic force microscopy (AFM). Magnetization (M) and
magnetic hysteresis were measured by a superconducting
quantum interference device (SQUID) magnetometer with
in-plane magnetic field. Temperature dependence of electri-
cal conductivity and current-voltage (/-V) characteristics
were measured by a semiconductor parameter analyzer using
In or In/Au contact pads.

lll. RESULTS AND DISCUSSION

Two kinds of films, LSMO/STO and LSMO/STO/Si, of
various thicknesses 7. (55 nm) were grown in order to com-
pare their magnetic properties. The effects of film thickness
on the surface morphology and magnetic properties of
LSMO/STO films are discussed first. Figures 1(a) and 1(b)
show the AFM images of LSMO/STO films with LSMO film
thickness of 55 nm and 22 nm, respectively. It is very clear
that the film is atomically smooth with a surface roughness
of 0.7 nm. Large areas >0.5 um with a surface roughness
even less than 0.2 nm are seen. However, this decreases to
about 80-100 nm area with increased surface roughness to
1.9 nm.

J. Appl. Phys. 103, 023914 (2008)

2.00 20.Q rm

10.0 nm

0.0 wn

2pmx2pm
rms:0.7 nm

$0.0 nm

25,0 nen

2pmx2um
rmsM.5 nm ‘

FIG. 1. (Color online) AFM images of (a) LSMO/STO of 55 nm and (b) 22
nm thick films.

Figure 2 demonstrates the temperature dependence of
the field-cooled (FC) magnetization behavior of LSMO/STO
films with varying thickness of LSMO films, such as 55, 22,
and 12 nm. The magnetic field was applied parallel to the
film surface in all films in the present work. The inset shows
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FIG. 2. (Color online) Temperature dependence of FC magnetization of
LSMO/STO films of varying thickness, from 55 nm down to 12 nm. The
inset shows the enlarged graphs of temperature dependence of magnetiza-
tion curves for 22 nm and 12 nm thick films.
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FIG. 3. (Color online) Magnetization hysteresis of 55 nm thick LSMO/STO
film at 5 K and 300 K.

the temperature dependence of the magnetization of the 22
nm and 12 nm films in an enlarged scale. The highest T, was
obtained at 360 K in the film at a record low thickness of 55
nm. However, as the thickness was decreased, the T, also
decreased, revealing a strong dependence of the Curie tem-
perature on film thickness and suggesting that there is a criti-
cal thickness (z,) at which a ferromagnetic state can no
longer be maintained above room temperature in this mate-
rial.

The magnetization hysteresis measurement of LSMO
(55 nm)/STO film presented in Fig. 3 shows a pronounced
hysteresis at 300 and 5 K, results consistent with those of
previous studies of this material and verifying that LSMO/
STO maintains strong ferromagnetic properties at around
room temperature. However, the ferromagnetic onset transi-
tion obtained at 360 K for the LSMO/STO film of 55 nm
thickness with similar composition demonstrates a record
high value (360 K) compared to the previous results,'®!? in
which a 50 nm thick LSMO film on STO displays 7.
=335 K, and a 300 nm thick film shows 7,.=358 K. A film
thickness of at least 100-200 nm is reported to retain the
ferromagnetic transition temperature at 360 K, which is close
to the bulk 7, of the material. The key lies in the engineering
of the interface between the film and the substrate. It in-
volves growing very high-quality single-crystalline film by
tuning the growth temperature and postannealing in oxygen
ambient in order to relax the strain between the film and the
substrate and improve the surface morphology.

The strain relaxation of lattice mismatch between the
film and the substrate at the interfaces can be explained in
the following.6 The film grows coherently, storing the biaxial
strain energy below a critical thickness (z,.), above which the
transition temperature of the film reaches the bulk transition
temperature, such as thick films' and bulk samples. Above
t,, the elastic energy (due to the strain in the film, especially
at the interface) in the strained film exceeds that in the core

J. Appl. Phys. 103, 023914 (2008)

o LSMO/STO/Si
"o 825 °C
O
Hn H=100G
E\D
30 L -
o = O 55nm
L ] O 22nm
S O
£ o
g 20- % -
S '?EI
8 OOOOOO O
g % B,
O
= 10 — OO El\] -
o
o
m]
Cl
0 -

TTTT I TTTT I TTrTT | TTTT I LI I TTT 71’77 T
50 100 150 200 250 300
Temperature (K)

FIG. 4. (Color online) Temperature dependence of FC magnetization of
LSMO/STO/Si films of varying thickness, from 55 nm down to 22 nm,
grown at 825 °C.

of misfit dislocation which would be introduced at the film-
substrate interface. As a result, the film is relaxed to exhibit
a lattice constant similar to that of the bulk sample. Under-
standing and controlling the strain induced by lattice mis-
match in perovskite manganites is crucial for various appli-
cations, because strains control the physical properties of the
films.

The central results of the paper are the magnetic charac-
teristics of LSMO/STO/Si films of 55 nm thickness. The
temperature dependence of the FC magnetization for LSMO/
STO/Si heterostructures is shown in Fig. 4 for two thick-
nesses: 55 nm and 22 nm. The onset of the transition tem-
perature for the 55 nm thick film is 320 K and is decreased to
~250 K when the thickness is decreased to 22 nm. This is a
very large reduction in 7, in heterostructures compared to
that of LSMO/STO films, which is related to interfacial
strains and will be discussed in detail below.

For the present work, either an STO substrate or an STO
template layer on Si has been chosen because of the minimal
lattice mismatch (0.9%) between STO and LSMO. T.. depen-
dence on thickness is illustrated in Fig. 5 for films of various
thicknesses. We note that the film with thickness of 55 nm
has been presented here for further study, except for the mag-
netic transition as shown in Fig. 5. T, in the present samples
is taken as the onset of magnetic transition using a magnetic
field of 500 G in a field-cooled condition. It is evident that 7',
decreases sharply as the thickness of the film is decreased
from 55 nm to 12 nm for both films, LSMO/STO and
LSMO/STO/Si. However, the decrease is larger in the case
of LSMO/STO/Si as compared to LSMO directly grown on
STO. The present LSMO/STO/Si films of 55 nm thickness
show a T, of about 320 K, which is close to the accepted T,
value of LSMO/STO with similar thickness.

Due to the difference in the lattice parameters of films
(arsmo=3.870 A) and substrates (agro~3.905 A), the
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FIG. 5. (Color online) Dependence of transition temperature on film thick-
ness for both LSMO/STO and LSMO/STO/S:i films.

LSMO films are under tensile stress, which causes the films
on STO to grow in a pseudomorphic mode up to a film
thickness close to 55 nm. The strain is released as the critical
thickness of the film reaches close to 55 nm. As the thickness
of the film decreases below 7., the relaxed top layer shows
good ferromagnetic properties but the strained bottom layer
in the vicinity of the interface shows degraded ferromagnetic
properties. Such a scenario also explains the reduced T, in
LSMO/STO/Si films. The interface between STO and LSMO
contains some tetrahedral distortions, as observed in our
cross-sectional high-resolution transmission electron micros-
copy (HRTEM) measurements shown in Fig. 6 and described
below.

The cross-sectional HRTEM shows two interface re-
gions; LSMO/STO and STO/Si, as shown in Fig. 6(a). The
STO is grown heteroepitaxially on Si and exhibits the inter-
face layer of about 2 nm that contains disorders due to a
lattice mismatch between STO and Si (~1.7%). However,
beyond the 2 nm initial layer, STO maintains its crystallo-
graphic order (epitaxial). Finally, the LSMO film that is
grown on STO experiences strain as well as crystallographic
disorder over a few nanometers thickness, as seen in the
TEM image. This eventually reduces the effective thickness
of the LSMO films, as well as enhances the thickness of the
strained interfacial layer in the film. This phenomenon sig-
nificantly contributes to the sharp decline of 7, in LSMO/
STO/Si as the thickness of the film is decreased; the oxidized
interface between Si and STO especially influences the
growth of STO film. The oxidized region is indicated in Fig.
6(b) by an arrow for a film in which such an oxidized Si/STO
interface was observed after annealing the films. The other
interface is the LSMO/STO, which shows the tetrahedral dis-
tortion as indicated in Fig. 6(b). The distorted interface can
extend up to few nanometers. One of the possibilities for
such distortions is the oxygen nonstoichiometry at the
LSMO/STO interface. On the other hand, the surface mor-
phology of the multilayered films is influenced by the thick-

J. Appl. Phys. 103, 023914 (2008)

FIG. 6. TEM image of 55 nm thick LSMO/STO/Si films displaying both
STO/Si and LSMO/STO interfaces (a) without oxidation between the
STO/Si interface and (b) with oxidation between the STO/Si interface after
annealing, and the distorted interface region between LSMO/STO, as indi-
cated by an arrow and ellipse, respectively.

ness of the films, as shown in Fig. 7 for a thickness of (a) 22
and (b) 55 nm. It is evident that as the thickness decreases
the surface shows irregular steps, although the surface rough-
ness decreases from 2 nm to 1 nm. It is suspected that the
microstrain developed at the interface between STO and
LSMO has an effect on the surface morphology.

In an attempt to study the effects of growth temperature
on the crystallinity and magnetic properties of the LSMO/
STO/Si, 55 nm thick films of LSMO were deposited at ad-
ditional growth temperatures. The surface morphology was
investigated through AFM measurements in order to visual-
ize any surface modification due to increased growth tem-
perature. An increase in the growth temperature causes the
grains at the surface of the film to coalesce, improving the
overall crystallinity of the film, and there is evidence of a
decrease in surface roughness due to the diffusion of the
grain boundaries.

The absolute magnetization increased significantly as the
film-growth temperature increased for 55 nm thick films, as
shown in Fig. 8. However, no change was observed in the
onset of magnetic transition. These results imply that at
higher temperatures the films can transport oxygen better
through diffusion, enhancing the overall crystallographic or-
der, but varying the growth temperature does not signifi-
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FIG. 7. (Color online) AFM images of LSMO/STO/Si (a) 22 nm and (b) 55
nm thick films.

cantly reduce the overall strain in the film—the component
that was found partially responsible for the magnetic behav-
ior in previous thickness dependence studies. In addition,
other critical parameters, such as the reduction of the dead
layer at the STO/Si interface due to higher growth tempera-
ture, may have a contributed to the 3 times magnetization
enhancement at 10 K. However, further interface studies are
necessary to confirm this.

It is well known that for LSMO tensile biaxial strain
causes a reduction of T, (Ref. 20) so that relaxation is ex-
pected to produce an increase of 7. In order to verify this

60
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FIG. 8. (Color online) Temperature dependence of FC magnetization of 55
nm thick LSMO/STO/Si films grown at 810—-840 °C.
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FIG. 9. (Color online) AFM images of 55 nm thick LSMO/STO/S:i films (a)
grown at 825 °C and (b) consequently annealed at 850 °C in oxygen for 1
h.

based on the influence of the oxygen content, we performed
measurements on samples with postannealing in oxygen as
done for LSMO/STO films. It has been proven that annealing
in oxygen ambient at temperatures above 950 °C improves
the magnetic properties of LSMO/STO due to better oxygen-
ation and reduced crystallographic defects. As a result, one
should expect to observe a similar trend in the magnetic
behavior of LSMO/STO/Si as a result of annealing in oxy-
gen. In order to test the postannealing behavior of the film,
the film grown at 825 °C was annealed in oxygen at 850 °C
for 1 h. The surface morphology of the film changed signifi-
cantly, as shown in AFM images presented in Fig. 9 for (a)
as-grown and (b) annealed films, respectively. The surface
shows the coalescence of grains forming large islands with
slightly increased surface roughness to 2 nm, which is
mainly due to the coalescence of large domains containing
nanosize grains. However, the films show large volume frac-
tions of atomically smooth islands.

The temperature-dependent zero-field-cooled (ZFC) and
FC magnetization curves are shown in Fig. 10(a) for both
as-grown and annealed films. The oxygen anneal signifi-
cantly enhanced magnetization, while there is hardly any en-
hancement in magnetic 7.. However, the field-dependent
magnetization graphs [Fig. 10(b)] show a widening in the
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nealed at 840 °C. (b) Magnetization hysteresis loops of 55 nm thick LSMO/
STO/Si films grown at 825 °C and annealed at 840 °C.

hysteresis loop at 300 K while the film is annealed at 850 °C
as compared to the as-grown film. Additionally, the satura-
tion field increased to about 1000 G from 150 G upon an-
nealing. This shows that annealing in oxygen at higher tem-
perature improves the magnetic properties significantly and
can make this material promising for room-temperature ap-
plications. It is suggested that although oxygenation at high
temperatures increases the oxygen content in the film, en-
hancing the magnetization in the larger islands, the 7. is
hardly affected due to the deterioration of the interfaces, as
shown in Fig. 6(b), causing larger strain effects.

In order to better illustrate the magnetic ordering and
homogeneity in LSMO/STO/Si, the temperature dependence
of ZFC and FC magnetization curves is presented in Fig. 11.
In these measurements, the sample was cooled in either zero-
magnetic field (ZFC) to a desired temperature and then mag-
netic field was applied or field-cooled. The measurements
were done while warming the sample in magnetic field for
both cases. For H=100 G, the FC and ZFC curves separate
at around 220 K with a distinct irreversibility, accompanied
by a remarkable thermomagnetic hysteresis (or irreversibil-
ity) with M pc# My at the irreversibility temperature Ty,
and Mpc—M - increases as temperature decreases. How-

J. Appl. Phys. 103, 023914 (2008)
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FIG. 11. (Color online) (a) Temperature dependence of FC and ZFC mag-
netization of 55 nm thick LSMO/STO/Si films at various field values.

ever, for H=200 G, Mgc—Mypc decreases remarkably until
H reaches 1000 G and T,, disappears completely beyond
1000 G. This type of irreversibility in magnetization is gen-
erally indicative of antiferromagnetic (AF) ordering; how-
ever, for a simple AF no thermomagnetic hysteresis is ex-
pected. This latter effect is traditionally accepted as a
hallmark of cluster-spin-glass systems with a characteristic
spin-glass transition temperature 7,. This may be attributed
to the presence of Mn—-Mn clusters in the interface region
which are antiferromagnetically coupled, and such coupling
is stronger at low temperature. However, as in the case of
many other manganites, the charge ordering coexists with
ferromagnetism in the low-temperature phase.

We finally discuss the effects of film thickness on the
transition temperature of LSMO. The ferromagnetic proper-
ties in manganites are specifically determined from two fac-
tors: (i) the double exchange of electrons between ferromag-
netically coupled Mn** and Mn** ions, and (ii) the Jahn-
Teller electron-phonon interaction due to lattice distortion.
The strain effect on 7, and other magnetic and transport
properties can be quantified to be a sum of the bulk and
Jahn-Teller components. For example, 7, can be
expressed™”! as T.(e)=T.(0)(1-as,—1/2A'?), where &, is
bulk strain and &’ =(1-a/c). The decrease in T, is larger for
tensile strain with g,>0 than for compressive strain (g,
<0). As pointed out carlier,” the strong dependence of T
originates from a strong interplay between the Mn e, elec-
tron itineracy and the localizing effect of a strong electron
lattice coupling. One of the strong arguments is that lifting
the degeneracy of the two e, levels due to the Jahn-Teller
effect in a cubic environment by a biaxial distortion with the
strain-induced biaxial distortion increases the Jahn-Teller
splitting and thereby, the tendency of the electrons to become
localized. Generally, a strain effect of about 1% causes a
shift of T, of about 20%. Although bulk crystals of LSMO
have rhombohedral symmetry as opposed to the cubic sym-
metry of STO with lattice mismatch of only 0.9%, the film
may not have misfit dislocation at the interface, resulting in a
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FIG. 12. (Color online) XRD patterns of LSMO/STO and LSMO/STO/Si of
55 nm and 22 nm thickness, respectively.

coherent but strained atomic arrangement. In thin films, the
crystal structure of LSMO is modified to tetragonal and ex-
panded in a lateral plane to match that of STO, in keeping
with the in-plane crystal coherency at the interface. This is
the fact for the present 55 nm thick LSMO/STO film under
well-optimized conditions (having 7. close to the bulk
sample), in contrast to 100 nm in other reports.22 The c-axis
lattice constant calculated from the X-ray diffraction (XRD)
data for LSMO/STO varies from 3.86 to 3.845 A as thick-
ness of the film reduces from 55 to 22 nm, compared to the
lattice contact of bulk LSMO (3.889 A). This induces ten-
sile strain in the films as thickness is reduced. However, the
scenario is critical for STO-buffered Si. The LSMO film on
STO-buffered Si experiences two strain effects, one incurred
from the strain from Si/STO (due to the small thickness of
STO) and the other from the LSMO/STO interface. The
XRD patterns of LSMO/STO and LSMO/STO/Si are shown
in Fig. 12 for a sample thickness of 55 nm and 22 nm in
order to infer the crystallographic information. XRD con-
firmed that perovskite oxide heteroepitaxy on Si substrate
develops with STO(001)//Si(001) and STO[100]//Si[110], as
reported earlier.”” However, although the (002) peak position
for LSMO is somehow coincident with that of LSMO/STO
film, the peak position for STO shifts to a lower angle, as
shown in Fig. 12, illustrating variation of the lattice param-
eters. The c-axis lattice constant for LSMO/STO/Si varies
from 3.85 to 3.84 A, as the thickness of the film reduces
from 55 to 22 nm. In view of the above, additional strain
from the STO/Si layer is experienced by the LSMO films,
reducing the transition temperature. Although the XRD re-
sults along with the interface defects probed by TEM give
evidence for strains or interface defects which influence the
physical properties of LSMO film, further structural studies
are necessary to fully understand this interesting and compli-
cated phenomenon. However, combination of these strains
forms nanocrystalline grains on the surface. The reasons for
such growth behavior can the explained by taking into ac-
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count the Volmer—Weber type growth in which the energy
relaxation takes place via the formation of 3D islands for
energy minimization. The magnetic inhomogeneity observed
in LSMO films of STO-buffered Si is the consequence of
interface disorders which reduce T, faster than that of LSMO
on STO.

IV. CONCLUSION

We have presented the magnetic properties of LSMO
films with varying thickness. The 7. of La ¢Srj ,MnO; films
grown directly on STO and STO-buffered Si substrates de-
creases sharply with decreasing film thickness. However, T,
decreases faster in films grown on STO-buffered Si sub-
strates than those directly grown on STO. The critical thick-
ness of 55 nm thick LSMO/STO film shows T, at about 360
K, which is close to the bulk value, whereas 7. LSMO film
on STO-buffered Si film of similar thickness is reduced to
320 K. The film surface morphology is influenced by both
film thickness and postannealing. LSMO/STO/Si films, at the
55 nm thickness, were used to further investigate the effects
of increasing growth temperature and postannealing in oxy-
gen on its magnetic transition. These conditions minimally
affected 7. but improved the overall magnetization of the
films due to better oxygenation. However, the reduction in 7',
is caused by the interface disorders due to high-temperature
annealing. The thermomagnetic history effects observed in
LSMO films of STO-buffered Si indicate the presence of
inhomogeneity, mostly at the interface, which significantly
influences the magnetic properties.
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