3,425 research outputs found

    Bell inequality with an arbitrary number of settings and its applications

    Full text link
    Based on a geometrical argument introduced by Zukowski, a new multisetting Bell inequality is derived, for the scenario in which many parties make measurements on two-level systems. This generalizes and unifies some previous results. Moreover, a necessary and sufficient condition for the violation of this inequality is presented. It turns out that the class of non-separable states which do not admit local realistic description is extended when compared to the two-setting inequalities. However, supporting the conjecture of Peres, quantum states with positive partial transposes with respect to all subsystems do not violate the inequality. Additionally, we follow a general link between Bell inequalities and communication complexity problems, and present a quantum protocol linked with the inequality, which outperforms the best classical protocol.Comment: 8 pages, To appear in Phys. Rev.

    Rotational invariance as an additional constraint on local realism

    Full text link
    Rotational invariance of physical laws is a generally accepted principle. We show that it leads to an additional external constraint on local realistic models of physical phenomena involving measurements of multiparticle spin 1/2 correlations. This new constraint rules out such models even in some situations in which standard Bell inequalities allow for explicit construction of such models. The whole analysis is performed without any additional assumptions on the form of local realistic models.Comment: 4 page

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Differences in Iron Removal from Carbon Nanoonions and Multiwall Carbon Nanotubes for Analytical Purpose

    Get PDF
    The paper describes the differences between wet iron removal from carbon nanoonions and from multiwall carbon nanotubes for analytical purpose. Nowadays, both carbon nanoonions and multiwall carbon nanotubes are one of the most interesting materials with applicability in electronics, medicine and biotechnology. Medical applications of those nanomaterials require not only recognition of their structure but also measurement of metal impurities concentration. Inductively coupled plasma optical emission spectrometry as a method for Fe-determination requires liquid samples. Hence, we propose various protocols for leaching of iron from studied materials. Our results proved that structure of nanomaterials have an impact on the efficiency of iron removal

    Differences in Iron Removal from Carbon Nanoonions and Multiwall Carbon Nanotubes for Analytical Purpose

    Get PDF
    The paper describes the differences between wet iron removal from carbon nanoonions and from multiwall carbon nanotubes for analytical purpose. Nowadays, both carbon nanoonions and multiwall carbon nanotubes are one of the most interesting materials with applicability in electronics, medicine and biotechnology. Medical applications of those nanomaterials require not only recognition of their structure but also measurement of metal impurities concentration. Inductively coupled plasma optical emission spectrometry as a method for Fe-determination requires liquid samples. Hence, we propose various protocols for leaching of iron from studied materials. Our results proved that structure of nanomaterials have an impact on the efficiency of iron removal

    Do all pure entangled states violate Bell's inequalities for correlation functions?

    Full text link
    Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.Comment: 4 pages, journal versio

    E-Voting in an ubicomp world: trust, privacy, and social implications

    Get PDF
    The advances made in technology have unchained the user from the desktop into interactions where access is anywhere, anytime. In addition, the introduction of ubiquitous computing (ubicomp) will see further changes in how we interact with technology and also socially. Ubicomp evokes a near future in which humans will be surrounded by “always-on,” unobtrusive, interconnected intelligent objects where information is exchanged seamlessly. This seamless exchange of information has vast social implications, in particular the protection and management of personal information. This research project investigates the concepts of trust and privacy issues specifically related to the exchange of e-voting information when using a ubicomp type system

    In silico assessment of potential druggable pockets on the surface of α1-Antitrypsin conformers

    Get PDF
    The search for druggable pockets on the surface of a protein is often performed on a single conformer, treated as a rigid body. Transient druggable pockets may be missed in this approach. Here, we describe a methodology for systematic in silico analysis of surface clefts across multiple conformers of the metastable protein α1-antitrypsin (A1AT). Pathological mutations disturb the conformational landscape of A1AT, triggering polymerisation that leads to emphysema and hepatic cirrhosis. Computational screens for small molecule inhibitors of polymerisation have generally focused on one major druggable site visible in all crystal structures of native A1AT. In an alternative approach, we scan all surface clefts observed in crystal structures of A1AT and in 100 computationally produced conformers, mimicking the native solution ensemble. We assess the persistence, variability and druggability of these pockets. Finally, we employ molecular docking using publicly available libraries of small molecules to explore scaffold preferences for each site. Our approach identifies a number of novel target sites for drug design. In particular one transient site shows favourable characteristics for druggability due to high enclosure and hydrophobicity. Hits against this and other druggable sites achieve docking scores corresponding to a Kd in the µM–nM range, comparing favourably with a recently identified promising lead. Preliminary ThermoFluor studies support the docking predictions. In conclusion, our strategy shows considerable promise compared with the conventional single pocket/single conformer approach to in silico screening. Our best-scoring ligands warrant further experimental investigation
    corecore