3,775 research outputs found

    A Two-Coordinate Nickel Imido Complex That Effects C−H Amination

    Get PDF
    An exceptionally low coordinate nickel imido complex, (IPr*)Ni═N(dmp) (2) (dmp = 2,6-dimesitylphenyl), has been prepared by the elimination of N_2 from a bulky aryl azide in its reaction with (IPr*)Ni(η^6-C_7H_8) (1). The solid-state structure of 2 features two-coordinate nickel with a linear C−Ni−N core and a short Ni−N distance, both indicative of multiple-bond character. Computational studies using density functional theory showed a Ni═N bond dominated by Ni(dπ)−N(pπ) interactions, resulting in two nearly degenerate singly occupied molecular orbitals (SOMOs) that are Ni−N π* in character. Reaction of 2 with CO resulted in nitrene-group transfer to form (dmp)NCO and (IPr*)Ni(CO)_3 (3). Net C−H insertion was observed in the reaction of 2 with ethene, forming the vinylamine (dmp)NH(CH═CH_2) (5) via an azanickelacyclobutane intermediate, (IPr*)Ni{N,C:κ^2-N(dmp)CH_2CH_2} (4)

    Yeah, Right, Uh-Huh: A Deep Learning Backchannel Predictor

    Full text link
    Using supporting backchannel (BC) cues can make human-computer interaction more social. BCs provide a feedback from the listener to the speaker indicating to the speaker that he is still listened to. BCs can be expressed in different ways, depending on the modality of the interaction, for example as gestures or acoustic cues. In this work, we only considered acoustic cues. We are proposing an approach towards detecting BC opportunities based on acoustic input features like power and pitch. While other works in the field rely on the use of a hand-written rule set or specialized features, we made use of artificial neural networks. They are capable of deriving higher order features from input features themselves. In our setup, we first used a fully connected feed-forward network to establish an updated baseline in comparison to our previously proposed setup. We also extended this setup by the use of Long Short-Term Memory (LSTM) networks which have shown to outperform feed-forward based setups on various tasks. Our best system achieved an F1-Score of 0.37 using power and pitch features. Adding linguistic information using word2vec, the score increased to 0.39

    Bell inequality with an arbitrary number of settings and its applications

    Full text link
    Based on a geometrical argument introduced by Zukowski, a new multisetting Bell inequality is derived, for the scenario in which many parties make measurements on two-level systems. This generalizes and unifies some previous results. Moreover, a necessary and sufficient condition for the violation of this inequality is presented. It turns out that the class of non-separable states which do not admit local realistic description is extended when compared to the two-setting inequalities. However, supporting the conjecture of Peres, quantum states with positive partial transposes with respect to all subsystems do not violate the inequality. Additionally, we follow a general link between Bell inequalities and communication complexity problems, and present a quantum protocol linked with the inequality, which outperforms the best classical protocol.Comment: 8 pages, To appear in Phys. Rev.

    Rotational invariance as an additional constraint on local realism

    Full text link
    Rotational invariance of physical laws is a generally accepted principle. We show that it leads to an additional external constraint on local realistic models of physical phenomena involving measurements of multiparticle spin 1/2 correlations. This new constraint rules out such models even in some situations in which standard Bell inequalities allow for explicit construction of such models. The whole analysis is performed without any additional assumptions on the form of local realistic models.Comment: 4 page

    Nonclassicality of pure two-qutrit entangled states

    Full text link
    We report an exhaustive numerical analysis of violations of local realism by two qutrits in all possible pure entangled states. In Bell type experiments we allow any pairs of local unitary U(3) transformations to define the measurement bases. Surprisingly, Schmidt rank-2 states, resembling pairs of maximally entangled qubits, lead to the most noise-robust violations of local realism. The phenomenon seems to be even more pronounced for four and five dimensional systems, for which we tested a few interesting examples.Comment: 6 pages, journal versio

    Interference contrast in multi-source few photon optics

    Full text link
    Many recent experiments employ several parametric down conversion (PDC) sources to get multiphoton interference. Such interference has applications in quantum information. We study here how effects due to photon statistics, misalignment, and partial distinguishability of the PDC pairs originating from different sources may lower the interference contrast in the multiphoton experiments.Comment: 23 pages, 9 figures, journal versio

    SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    Get PDF
    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/while ASSAM can be accessed at http://mfrlab.org/grafss/assam/

    Differences in Iron Removal from Carbon Nanoonions and Multiwall Carbon Nanotubes for Analytical Purpose

    Get PDF
    The paper describes the differences between wet iron removal from carbon nanoonions and from multiwall carbon nanotubes for analytical purpose. Nowadays, both carbon nanoonions and multiwall carbon nanotubes are one of the most interesting materials with applicability in electronics, medicine and biotechnology. Medical applications of those nanomaterials require not only recognition of their structure but also measurement of metal impurities concentration. Inductively coupled plasma optical emission spectrometry as a method for Fe-determination requires liquid samples. Hence, we propose various protocols for leaching of iron from studied materials. Our results proved that structure of nanomaterials have an impact on the efficiency of iron removal

    Differences in Iron Removal from Carbon Nanoonions and Multiwall Carbon Nanotubes for Analytical Purpose

    Get PDF
    The paper describes the differences between wet iron removal from carbon nanoonions and from multiwall carbon nanotubes for analytical purpose. Nowadays, both carbon nanoonions and multiwall carbon nanotubes are one of the most interesting materials with applicability in electronics, medicine and biotechnology. Medical applications of those nanomaterials require not only recognition of their structure but also measurement of metal impurities concentration. Inductively coupled plasma optical emission spectrometry as a method for Fe-determination requires liquid samples. Hence, we propose various protocols for leaching of iron from studied materials. Our results proved that structure of nanomaterials have an impact on the efficiency of iron removal
    corecore