1,145 research outputs found

    Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope

    Get PDF
    AbstractBackground: Selective protein import into the cell nucleus occurs in two steps: binding to the nuclear envelope, followed by energy-dependent transit through the nuclear pore complex. A 60 kD protein, importin, is essential for the first nuclear import step, and the small G protein Ran/TC4 is essential for the second. We have previously purified the 60 kD importin protein (importin 60) as a single polypeptide.Results We have identified importin 90, a 90 kD second subunit that dissociates from importin 60 during affinity chromatography on nickel (II)–nitrolotriacetic acid–Sepharose, a technique that was originally used to purify importin 60. Partial amino-acid sequencing of Xenopus importin 90 allowed us to clone and sequence its human homologue; the amino-acid sequence of importin 90 is strikingly conserved between the two species. We have also identified a homologous budding yeast sequence from a database entry. Importin 90 potentiates the effects of importin 60 on nuclear protein import, indicating that the importin complex is the physiological unit responsible for import. To assess whether nuclear localization sequences are recognized by cytosolic receptor proteins, a biotin-tagged conjugate of nuclear localization signals linked to bovine serum albumin was allowed to form complexes with cytosolic proteins in Xenopus egg extracts; the complexes were then retrieved with streptavidin–agarose. The pattern of bound proteins was surprisingly simple and showed only two predominant bands: those of the importin complex. We also expressed the human homologue of importin 60, Rch1p, and found that it was able to replace its Xenopus counterpart in a functional assay. We discuss the relationship of importin 60 and importin 90 to other nuclear import factors.Conclusion Importin consists of a 60 and a 90 kD subunit. Together, they constitute a cytosolic receptor for nuclear localization signals that enables import substrates to bind to the nuclear envelope

    Body-Weight Fluctuations and Outcomes in Coronary Disease.

    Get PDF
    BackgroundBody-weight fluctuation is a risk factor for death and coronary events in patients without cardiovascular disease. It is not known whether variability in body weight affects outcomes in patients with coronary artery disease.MethodsWe determined intraindividual fluctuations in body weight from baseline weight and follow-up visits and performed a post hoc analysis of the Treating to New Targets trial, which involved assessment of the efficacy and safety of lowering low-density lipoprotein cholesterol levels with atorvastatin. The primary outcome was any coronary event (a composite of death from coronary heart disease, nonfatal myocardial infarction, resuscitated cardiac arrest, revascularization, or angina). Secondary outcomes were any cardiovascular event (a composite of any coronary event, a cerebrovascular event, peripheral vascular disease, or heart failure), death, myocardial infarction, or stroke.ResultsAmong 9509 participants, after adjustment for risk factors, baseline lipid levels, mean body weight, and weight change, each increase of 1 SD in body-weight variability (measured according to average successive variability and used as a time-dependent covariate) was associated with an increase in the risk of any coronary event (2091 events; hazard ratio, 1.04; 95% confidence interval [CI], 1.01 to 1.07; P=0.01), any cardiovascular event (2727 events; hazard ratio, 1.04; 95% CI, 1.02 to 1.07; P<0.001), and death (487 events; hazard ratio,1.09; 95% CI, 1.07 to 1.12; P<0.001). Among patients in the quintile with the highest variation in body weight, the risk of a coronary event was 64% higher, the risk of a cardiovascular event 85% higher, death 124% higher, myocardial infarction 117% higher, and stroke 136% higher than it was among those in the quintile with the lowest variation in body weight in adjusted models.ConclusionsAmong participants with coronary artery disease, fluctuation in body weight was associated with higher mortality and a higher rate of cardiovascular events independent of traditional cardiovascular risk factors. (Funded by Pfizer; ClinicalTrials.gov number, NCT00327691 .)

    Visit-to-visit variability of lipid measurements as predictors of cardiovascular events.

    Get PDF
    BACKGROUND:Higher visit-to-visit variability in risk factors such as blood pressure and low-density lipoprotein (LDL)-cholesterol are associated with an increase in cardiovascular (CV) events. OBJECTIVE:The purpose of this study was to determine whether variability in high-density lipoprotein cholesterol (HDL-C) and triglyceride levels predicted coronary and CV events in a clinical trial population with known coronary disease. METHODS:We assessed intraindividual variability in fasting high-density lipoprotein (HDL)-cholesterol, triglyceride, and LDL-cholesterol measurements among 9572 patients in the Treating to New Targets trial and correlated the results with coronary events over a median follow-up of 4.9 years. RESULTS:In the fully adjusted Cox model, 1 standard deviation of average successive variability, defined as the average absolute difference between successive values, was associated with an increased risk of a coronary event for HDL-cholesterol (hazard ratio [HR] 1.16, 95% confidence interval [CI] 1.11-1.21, P < .0001), for triglycerides (HR 1.09, 95% CI 1.04-1.15, P = .0005), and for LDL-cholesterol (HR 1.14, 95% CI 1.09-1.19, P < .0001). Similar results were found for the 3 other measures of variability, standard deviation, coefficient of variability, and variability independent of the mean. Similar results were seen for CV events, stroke, and nonfatal myocardial infarction. Higher variability in triglyceride and LDL-cholesterol, but not HDL-cholesterol, was predictive of incident diabetes. The correlation among the variability of the 3 lipid measurements was weak. CONCLUSION:Visit-to-visit variability in fasting measurements of HDL-cholesterol, triglycerides, and LDL-cholesterol are predictive of coronary events, CV events, and for triglyceride and low-density lipoprotein cholesterol variability, incident diabetes. The mechanisms accounting for these associations remain to be determined

    An Estimate of Avian Mortality at Communication Towers in the United States and Canada

    Get PDF
    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action

    Decreased MCM2-6 in Drosophila S2 cells does not generate significant DNA damage or cause a marked increase in sensitivity to replication interference.

    Get PDF
    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment
    • …
    corecore