13 research outputs found

    WOX9 control by the DELLAs mediates salt tolerance and root hair differentiation in arabidopsis

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 04-11-2016Esta tesis tiene embargado el acceso al texto completo hasta el 04-05-201

    Inserción laboral de los egresados en Relaciones Laborales y Recursos Humanos. Especial atención a las técnicas informales de acceso al empleo.

    Get PDF
    El trabajo examina los distintos métodos de acceso al empleo para los graduados en Relaciones Laborales y Recursos Humanos, haciendo hincapié en las técnicas informales de acceso al empleo. Estudia la percepción que tienen los futuros egresados del grado sobre la utilidad de los métodos de acceso al empleo y los pone en relación con su utilidad real. El trabajo también analiza la inversión que han realizado los estudiantes en capital social para facilitar su inclusión en el mercado laboral durante el periodo universitario. Demostrando la importancia de las técnicas informales de acceso al empleo y la necesidad de fomentar la inversión en redes sociales de los estudiantes de grado.<br /

    Controlled atmosphere pallets to extend the shelf-life of Calanda peaches

    Get PDF
    Calanda peaches have achieved great prestige in European markets because of their size, firmness and sweetness. However, apart from maintaining current markets by offering a high-quality product, further research is needed to improve their shelf-life in order to reach more distant markets. Thus, the effects of controlled atmosphere (CA) pallets at O2:CO2 concentrations of, 10:10, 5:10 and 2:10%, on the quality and shelf-life of Calanda ‘Calante’ peaches were studied. Physico-chemical parameters, ethanol and acetaldehyde production, decay percentage, chilling injury development and sensory evaluation were determined four times every 2 weeks of cold storage and shelf-life. Also, gas chromatography-olfactometry was conducted to detect off-flavours. Peaches stored at ambient atmosphere at 1°C promptly developed symptoms of chilling injury that became severe on day 28. All the CA conditions delayed ripening and prevented chilling injury with the best sensory results obtained for peaches stored at 2% O2:10% CO2. Although an increase in the production of ethanol and acetaldehyde was detected from day 14 onwards, this did not affect the quality of the fruit that was excellent after 56 days at 1°C plus a shelf-life period of 1 day at 20°C

    Daily sitting for long periods increases the odds for subclinical atheroma plaques

    Get PDF
    Sedentarism is a risk factor for cardiovascular disease (CVD), but currently it is not clear how a sedentary behavior such as long sitting time can affect atherosclerosis development. This study examined the relationship between sitting time and the prevalence of carotid and femoral subclinical atherosclerosis. A cross-sectional analysis based on a subsample of 2082 participants belonging to the Aragon Workers’ Health Study was carried out. Ultrasonography was used to assess the presence of plaques in carotid and femoral territories; the validated Spanish version of the questionnaire on the frequency of engaging in physical activity used in the Nurses’ Health Study and the Health Professionals’ was used to assess physical activity and sitting time; and demographic, anthropometric, and clinical data were obtained by trained personnel during the annual medical examination. Participants were categorized into <9 h/day and ≥9 h/day sitting time groups. After adjusting for several confounders, compared with participants that remain seated <9 h/day, those participants who remain seated ≥9 h/day had, respectively, OR = 1.25 (95%CI: 1.01, 1.55, p < 0.05) and OR = 1.38 (95%CI: 1.09, 1.74, p < 0.05) for carotid and any-territory plaque presence. Remaining seated ≥9 h/day is associated with higher odds for carotid and any-territory plaque presence independently of physical activity levels and other cardiovascular risk factors

    Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis

    Full text link
    [EN] DNA-binding with one finger (DOF)-type transcription factors are involved in many fundamental processes in higher plants, from responses to light and phytohormones to flowering time and seed maturation, but their relation with abiotic stress tolerance is largely unknown. Here, we identify the roles of CDF3, an Arabidopsis DOF gene in abiotic stress responses and developmental processes like flowering time. CDF3 is highly induced by drought, extreme temperatures and abscisic acid treatment. The CDF3 T-DNA insertion mutant cdf3-1 is much more sensitive to drought and low temperature stress, whereas CDF3 overexpression enhances the tolerance of transgenic plants to drought, cold and osmotic stress and promotes late flowering. Transcriptome analysis revealed that CDF3 regulates a set of genes involved in cellular osmoprotection and oxidative stress, including the stress tolerance transcription factors CBFs, DREB2A and ZAT12, which involve both gigantea-dependent and independent pathways. Consistently, metabolite profiling disclosed that the total amount of some protective metabolites including -aminobutyric acid, proline, glutamine and sucrose were higher in CDF3-overexpressing plants. Taken together, these results indicate that CDF3 plays a multifaceted role acting on both flowering time and abiotic stress tolerance, in part by controlling the CBF/DREB2A-CRT/DRE and ZAT10/12 modules.We thank Dr Pablo Gonzalez-Melendi and Dr Jan Zouhar for technical handling of the confocal microscope and Dr Rafael Catala for the assistance with the low temperature stress assays. This work was supported by grants from Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA; projects 2009-0004-C01, 2012-0008-C01), Spanish Ministry of Science and Innovation (projects BIO2010-1487, BFU2013-49665-EXP). A.R.C. and J.D.F. were supported by INIA pre-doctoral fellowshipsCorrales, AR.; Carrillo, L.; Lasierra, P.; Nebauer, SG.; Dominguez-Figueroa, J.; Renau-Morata, B.; Pollmann, S.... (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses in Arabidopsis. Plant Cell & Environment. 40(5):748-764. https://doi.org/10.1111/pce.12894S748764405Achard, P., Gong, F., Cheminant, S., Alioua, M., Hedden, P., & Genschik, P. (2008). The Cold-Inducible CBF1 Factor–Dependent Signaling Pathway Modulates the Accumulation of the Growth-Repressing DELLA Proteins via Its Effect on Gibberellin Metabolism. The Plant Cell, 20(8), 2117-2129. doi:10.1105/tpc.108.058941Ahuja, I., de Vos, R. C. H., Bones, A. M., & Hall, R. D. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15(12), 664-674. doi:10.1016/j.tplants.2010.08.002Alonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., … Dröge-Laser, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21(6), 1747-1761. doi:10.1105/tpc.108.062968BEUVE, N., RISPAIL, N., LAINE, P., CLIQUET, J.-B., OURRY, A., & LE DEUNFF, E. (2004). Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant, Cell and Environment, 27(8), 1035-1046. doi:10.1111/j.1365-3040.2004.01208.xBlümel, M., Dally, N., & Jung, C. (2015). Flowering time regulation in crops — what did we learn from Arabidopsis? Current Opinion in Biotechnology, 32, 121-129. doi:10.1016/j.copbio.2014.11.023Bouche, N., Fait, A., Bouchez, D., Moller, S. G., & Fromm, H. (2003). Mitochondrial succinic-semialdehyde dehydrogenase of the  -aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences, 100(11), 6843-6848. doi:10.1073/pnas.1037532100Catala, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. doi:10.1073/pnas.1107161108Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125Chen, H., Hwang, J. E., Lim, C. J., Kim, D. Y., Lee, S. Y., & Lim, C. O. (2010). Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications, 401(2), 238-244. doi:10.1016/j.bbrc.2010.09.038Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. doi:10.1016/j.plantsci.2004.07.039Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCorrales, A., Carrillo, L., Nebauer, S., Renau-Morata, B., Sánchez-Perales, M., Fernández-Nohales, P., … Medina, J. (2014). Salinity Assay in Arabidopsis. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1216Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451Davletova, S., Schlauch, K., Coutu, J., & Mittler, R. (2005). The Zinc-Finger Protein Zat12 Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiology, 139(2), 847-856. doi:10.1104/pp.105.068254DÉJARDIN, A., SOKOLOV, L. N., & KLECZKOWSKI, L. A. (1999). Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochemical Journal, 344(2), 503-509. doi:10.1042/bj3440503Dubois, M., Skirycz, A., Claeys, H., Maleux, K., Dhondt, S., De Bodt, S., … Inzé, D. (2013). ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis. Plant Physiology, 162(1), 319-332. doi:10.1104/pp.113.216341Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Fowler, S. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO Journal, 18(17), 4679-4688. doi:10.1093/emboj/18.17.4679Galmés, J., Medrano, H., & Flexas, J. (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175(1), 81-93. doi:10.1111/j.1469-8137.2007.02087.xGill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. doi:10.1016/j.plaphy.2010.08.016Gilmour, S. J., Fowler, S. G., & Thomashow, M. F. (2004). Arabidopsis Transcriptional Activators CBF1, CBF2, and CBF3 have Matching Functional Activities. Plant Molecular Biology, 54(5), 767-781. doi:10.1023/b:plan.0000040902.06881.d4Gong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., … Ye, Z. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 61(13), 3563-3575. doi:10.1093/jxb/erq167Gould, P. D., Locke, J. C. W., Larue, C., Southern, M. M., Davis, S. J., Hanano, S., … Hall, A. (2006). The Molecular Basis of Temperature Compensation in the Arabidopsis Circadian Clock. The Plant Cell, 18(5), 1177-1187. doi:10.1105/tpc.105.039990Han, Q., Kang, G., & Guo, T. (2013). Proteomic analysis of spring freeze-stress responsive proteins in leaves of bread wheat (Triticum aestivum L.). Plant Physiology and Biochemistry, 63, 236-244. doi:10.1016/j.plaphy.2012.12.002Hernando-Amado, S., González-Calle, V., Carbonero, P., & Barrero-Sicilia, C. (2012). The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 12(1), 202. doi:10.1186/1471-2229-12-202Zou, H.-F., Zhang, Y.-Q., Wei, W., Chen, H.-W., Song, Q.-X., Liu, Y.-F., … Chen, S.-Y. (2012). The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochemical Journal, 449(2), 373-388. doi:10.1042/bj20110060Hussain, S. S., Kayani, M. A., & Amjad, M. (2011). Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress, 27(2), 297-306. doi:10.1002/btpr.514Imaizumi, T. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293-297. doi:10.1126/science.1110586Ingram, J., & Bartels, D. (1996). THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 377-403. doi:10.1146/annurev.arplant.47.1.377Jarillo, J. A., Del Olmo, I., Gómez-Zambrano, A., Lázaro, A., López-González, L., Miguel, E., … Piñeiro, M. (2008). Photoperiodic control of flowering time: a review. Spanish Journal of Agricultural Research, 6(S1), 221. doi:10.5424/sjar/200806s1-391Izaurralde, E. (1997). The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. The EMBO Journal, 16(21), 6535-6547. doi:10.1093/emboj/16.21.6535Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 145(4), 1144-1154. doi:10.1104/pp.107.106989Kim, S. Y., & Nam, K. H. (2010). Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Reports, 29(2), 203-209. doi:10.1007/s00299-009-0813-0Kiyosue, T., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1994). Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) inArabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Molecular Biology, 25(5), 791-798. doi:10.1007/bf00028874Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.xLiu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1998). Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis. The Plant Cell, 10(8), 1391. doi:10.2307/3870648Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., … Seki, M. (2008). Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions using a Tiling Array. Plant and Cell Physiology, 49(8), 1135-1149. doi:10.1093/pcp/pcn101Medina, J., Bargues, M., Terol, J., Pérez-Alonso, M., & Salinas, J. (1999). The Arabidopsis CBF Gene Family Is Composed of Three Genes Encoding AP2 Domain-Containing Proteins Whose Expression Is Regulated by Low Temperature but Not by Abscisic Acid or Dehydration. Plant Physiology, 119(2), 463-470. doi:10.1104/pp.119.2.463Messerli, G., Partovi Nia, V., Trevisan, M., Kolbe, A., Schauer, N., Geigenberger, P., … Zeeman, S. C. (2007). Rapid Classification of Phenotypic Mutants of Arabidopsis via Metabolite Fingerprinting. Plant Physiology, 143(4), 1484-1492. doi:10.1104/pp.106.090795Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19. doi:10.1016/j.tplants.2005.11.002Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., … Coupland, G. (2005). Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. doi:10.1105/tpc.105.033464Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNishiyama, R., Le, D. T., Watanabe, Y., Matsui, A., Tanaka, M., Seki, M., … Tran, L.-S. P. (2012). Transcriptome Analyses of a Salt-Tolerant Cytokinin-Deficient Mutant Reveal Differential Regulation of Salt Stress Response by Cytokinin Deficiency. PLoS ONE, 7(2), e32124. doi:10.1371/journal.pone.0032124Noguero, M., Atif, R. M., Ochatt, S., & Thompson, R. D. (2013). The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. Plant Science, 209, 32-45. doi:10.1016/j.plantsci.2013.03.016Novillo, F., Medina, J., & Salinas, J. (2007). Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proceedings of the National Academy of Sciences, 104(52), 21002-21007. doi:10.1073/pnas.0705639105OliverosJ.C.(2007)Venny an interactive tool for comparing lists with Venn's diagrams.http://bioinfogp.cnb.csic.es/tools/venny/index.html.Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93Osakabe, Y., Kajita, S., & Osakabe, K. (2011). Genetic engineering of woody plants: current and future targets in a stressful environment. Physiologia Plantarum, 142(2), 105-117. doi:10.1111/j.1399-3054.2011.01451.xPark, D. H. (1999). Control of Circadian Rhythms and Photoperiodic Flowering by the Arabidopsis GIGANTEA Gene. Science, 285(5433), 1579-1582. doi:10.1126/science.285.5433.1579Rajasekaran, L. R., Aspinall, D., & Paleg, L. G. (2000). Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian Journal of Plant Science, 80(1), 151-159. doi:10.4141/p99-003Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology, 134(4), 1683-1696. doi:10.1104/pp.103.033431Rosso, M. G., Li, Y., Strizhov, N., Reiss, B., Dekker, K., & Weisshaar, B. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Molecular Biology, 53(1/2), 247-259. doi:10.1023/b:plan.0000009297.37235.4aRueda-López, M., Crespillo, R., Cánovas, F. M., & Ávila, C. (2008). Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, 56(1), 73-85. doi:10.1111/j.1365-313x.2008.03573.xSakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Functional Analysis of an Arabidopsis Transcription Factor, DREB2A, Involved in Drought-Responsive Gene Expression. The Plant Cell, 18(5), 1292-1309. doi:10.1105/tpc.105.035881Sato, Y., & Yokoya, S. (2007). Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27(2), 329-334. doi:10.1007/s00299-007-0470-0Sawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261-265. doi:10.1126/science.1146994Scarpeci, T. E., Zanor, M. I., Mueller-Roeber, B., & Valle, E. M. (2013). Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Molecular Biology, 83(3), 265-277. doi:10.1007/s11103-013-0090-8Seki, M., Kamei, A., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 14(2), 194-199. doi:10.1016/s0958-1669(03)00030-2Shelp, B. J., Mullen, R. T., & Waller, J. C. (2012). Compartmentation of GABA metabolism raises intriguing questions. Trends in Plant Science, 17(2), 57-59. doi:10.1016/j.tplants.2011.12.006Shi, H., & Chan, Z. (2014). The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6 -activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. Journal of Pineal Research, 57(2), 185-191. doi:10.1111/jpi.12155Shinozaki, K., & Yamaguchi-Shinozaki, K. (2006). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58(2), 221-227. doi:10.1093/jxb/erl164Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6(5), 410-417. doi:10.1016/s1369-5266(03)00092-xSkirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Current Opinion in Biotechnology, 21(2), 197-203. doi:10.1016/j.copbio.2010.03.002Snedden, W. A., Arazi, T., Fromm, H., & Shelp, B. J. (1995). Calcium/Calmodulin Activation of Soybean Glutamate Decarboxylase. Plant Physiology, 108(2), 543-549. doi:10.1104/pp.108.2.543STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.xStudart-Guimarães, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., & Fernie, A. R. (2007). Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the γ-Aminobutyrate Shunt in Illuminated Tomato Leaves. Plant Physiology, 145(3), 626-639. doi:10.1104/pp.107.103101Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800Suzuki, M., Kao, C.-Y., Cocciolone, S., & McCarty, D. R. (2002). Maize VP1 complements Arabidopsisabi3 and confers a novel ABA/auxin interaction in roots. The Plant Journal, 28(4), 409-418. doi:10.1046/j.1365-313x.2001.01165.xTaji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., … Shinozaki, K. (2002). Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal, 29(4), 417-426. doi:10.1046/j.0960-7412.2001.01227.xThomashow, M. F. (2010). Molecular Basis of Plant Cold Acclimation: Insights Gained from Studying the CBF Cold Response Pathway: Figure 1. Plant Physiology, 154(2), 571-577. doi:10.1104/pp.110.161794Toufighi, K., Brady, S. M., Austin, R., Ly, E., & Provart, N. J. (2005). The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. The Plant Journal, 43(1), 153-163. doi:10.1111/j.1365-313x.2005.02437.xVogel, J. T., Zarka, D. G., Van Buskirk, H. A., Fowler, S. G., & Thomashow, M. F. (2004). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal, 41(2), 195-211. doi:10.1111/j.1365-313x.2004.02288.xWang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9(5), 244-252. doi:10.1016/j.tplants.2004.03.006Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444Yanagisawa, S. (2001). The Transcriptional Activation Domain of the Plant-Specific Dof1 Factor Functions in Plant, Animal, and Yeast Cells. Plant and Cell Physiology, 42(8), 813-822. doi:10.1093/pcp/pce105Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.xYanagisawa, S., & Sheen, J. (1998). Involvement of Maize Dof Zinc Finger Proteins in Tissue-Specific and Light-Regulated Gene Expression. The Plant Cell, 10(1), 75-89. doi:10.1105/tpc.10.1.75Yang, X., Srivastava, R., Howell, S. H., & Bassham, D. C. (2015). Activation of autophagy by unfolded proteins d

    Cuentos deseducativos

    No full text
    Seleccionado en la convocatoria: Ayudas a la innovación e investigación educativa en centros docentes de niveles no universitarios, Gobierno de Aragón 2010-2011Proyecto del colegio Vicente Ferrer Ramos cuyo eje central gira en torno al mundo de los cuentos populares, tomando como objeto la creación de un corto de cine sobre estos. Se analizan y se trabajan las estructuras de los cuentos y los personajes típicos que suelen aparecer en ellos, así como la historia de sus principales autores y la comparativa entre las diferentes versiones en que se puede encontrar. Posteriormente se trabaja el corto de cine, siendo el argumento un juicio a algunos personajes 'buenos' de cuentos. Los alumnos representan y caracterizan el corto que luego se postproduce en dvd.Gobierno de Aragón. Departamento de Educación, Cultura y DeporteAragónDirección General de Política Educativa; Avda. Gómez Laguna, 25, planta 2; 50009 Zaragoza; Tel. +34976715416; Fax +34976715496ES
    corecore