155 research outputs found

    Plasma Dynamics

    Get PDF
    Contains reports on seven research projects.U.S. Air Force - Office of Scientific Research (Grant AFOSR 84-0026)National Science Foundation (Grant ECS 85-14517)U.S. Department of Energy (Contract DE-FGO5-84ER 13272)Lawrence Livermore National Laboratory (Subcontract 6264005)National Science Foundation (Grant ECS 82-13430)U.S. Department of Energy (Contract DE-ACO2-78-ET-51013

    Flow instabilities of magnetic flux tubes II. Longitudinal flow

    Full text link
    Flow-induced instabilities are relevant for the storage and dynamics of magnetic fields in stellar convection zones and possibly also in other astrophysical contexts. We continue the study started in the first paper of this series by considering the stability properties of longitudinal flows along magnetic flux tubes. A linear stability analysis was carried out to determine criteria for the onset of instability in the framework of the approximation of thin magnetic flux tubes. In the non-dissipative case, we find Kelvin-Helmholtz instability for flow velocities exceeding a critical speed that depends on the Alfv{\'e}n speed and on the ratio of the internal and external densities. Inclusion of a friction term proportional to the relative transverse velocity leads to a friction-driven instability connected with backward (or negative energy) waves. We discuss the physical nature of this instability. In the case of a stratified external medium, the Kelvin-Helmholtz instability and the friction-driven instability can set in for flow speeds significantly lower than the Alfv{\'e}n speed. Dissipative effects can excite flow-driven instability below the thresholds for the Kelvin-Helmholtz and the undulatory (Parker-type) instabilities. This may be important for magnetic flux storage in stellar convection zones and for the stability of astrophysical jets.Comment: accepted by Astronomy & Astrophysic

    Plasma Dynamics

    Get PDF
    Contains table of contents for Section 2 and reports on four research projects.National Science Foundation Grant ECS 89-02990U.S. Air Force - Office of Scientific Research Grant AFOSR 89-0082-BU.S. Army - Harry Diamond Laboratories Contract DAAL02-89-K-0084U.S. Department of Energy Contract DE-AC02-90ER40591U.S. Navy - Office of Naval Research Grant N00014-90-J-4130Lawrence Livermore National Laboratory Subcontract B-160456National Science Foundation Grant ECS 88-22475U.S. Department of Energy Contract DE-FG02-91-ER-54109National Aeronautics and Space Administration Grant NAGW-2048U.S.-Israel Binational Science Foundation Grant 87-0057U.S Department of Energy Contract DE-AC02-78-ET-5101

    Bulk ion heating with ICRH in JET DT plasmas

    Get PDF
    Reactor relevant ICRH scenarios have been assessed during DT experiments on the JET tokamak using H mode divertor discharges with ITER-like shapes and safety factors. Deuterium minority heating in tritium plasmas was demonstrated for the first time. For 9% deuterium, an ICRH power of 6 MW gave 1.66 MW of fusion power from reactions between suprathermal deuterons and thermal tritons. The Q value of the steady state discharge reached 0.22 for the length of the RF flat-top (2.7 s), corresponding to three plasma energy replacement times. The Doppler broadened neutron spectrum showed a deuteron energy of 125 keV, which was optimum for fusion and close to the critical energy. Thus, strong bulk ion heating was obtained at the same time as high fusion efficiency. Deuterium fractions around 20% produced the strongest ion heating together with a strong reduction of the suprathermal deuteron tail. The ELMs had low amplitude and high frequency and each ELM transported less plasma energy content than the 1% required by ITER. The energy confinement time, on the ITERH97-P scale, was 0.90, which is sufficient for ignition in ITER. 3He minority heating, in approximately 50:50 D:T plasmas with up to 10% 3He, also demonstrated strong bulk ion heating. Central ion temperatures up to 13 keV were achieved, together with central electron temperatures up to 12 keV. The normalized H mode confinement time was 0.95. Second harmonic tritium heating produced energetic tritons above the critical energy. This scheme heats the electrons in JET, unlike in ITER where the lower power density will allow mainly ion heating. The inverted scenario of tritium minority ICRH in a deuterium plasma was demonstrated as a successful heating method producing both suprathermal neutrons and bulk ion heating. Theoretical calculations of the DT reactivity mostly give excellent agreement with the measured reaction rates
    corecore