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A uniform compressible plasma with a uniform flow along the magnetic field in the presence of a
resistive wall is shown to be subject to two instabilities. For the first instability, the flow velocity is
required to exceed the Alfve´n speed, whereas for the second it need only exceed the sound speed.
For a sufficiently high ion temperature, ion Landau damping is shown to stabilize the second
instability associated with the sound speed.@S1070-664X~99!03910-5#
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I. INTRODUCTION

The subject of resistive wall modes has become of
creasing interest in view of its relevance to the prospect
advanced tokamaks. Since the observation of greater stab
to this mode on DIII-D in the presence of toroidal flow1

various attempts2–7 have been made to find a stabilizin
mechanism due to rotation.

In order to clarify the effect of flow, Wesson8 has re-
cently analyzed a simple model consisting of the unifo
flow of an incompressible fluid along a uniform magne
field in slab geometry. The fluid was assumed to be separ
from a thin, resistive wall by a vacuum region, with a furth
vacuum region beyond the resistive wall. In this model
only source of free energy is the plasma flow. It was sho
that a resistive wall instability occurred when the flow velo
ity, v0 , exceeded a critical velocity, i.e.,v0.A2cA , where
cA is the Alfvén velocity. The existence of a critical velocity
v0;cA , in the above model is due to the fact that, apart fr
the wall mode, only compressional Alfve´n waves are in-
volved. The shear Alfve´n wave decouples from the compre
sional wave in this model. However, a compressible mo
allows the propagation of the slow magnetosonic wa
whose phase velocity,cs , is much lower than the Alfve´n
velocity under low beta conditions. In view of this, th
analysis given in Ref. 8 has been extended to the case
compressible plasma.

The compressible model, with the plasma flowing alo
the equilibrium magnetic field includes the resistive wall
stability discussed in Ref. 8, for which the critical flow spe
is of the orderA2cA . However, an additional resistive wa
instability is found which occurs at the much lower critic
flow speed,cs. Toroidal flow speeds of the order of the A
fvén velocity are not relevant to present tokamak conditio
On the other hand, toroidal flows of the order of the sou
speed are much closer to observed values.

The ideal magnetohydrodynamic~MHD! model includ-
3991070-664X/99/6(10)/3990/12/$15.00
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ing plasma compressibility contains only undamped fast
slow magnetosonic waves. The condition for sound wave
be weakly damped is thatTe@Ti . However, under norma
tokamak conditions,Te;Ti , and sound waves are heavi
damped by ion Landau damping. In the final part of t
paper kinetic effects are incorporated into the compress
model in order to study the effect of Landau damping on
resistive wall instability arising from the slow magnetoson
wave. It is found that the instability persists forTe@Ti but as
Te /Ti is reduced, the ion Landau damping becomes str
enough to stabilize the instability.

II. THE COMPRESSIBLE MODEL

A plane slab model will again be employed but inste
of the semi-infinite plasma used in Ref. 8 a finite slab will
analyzed. The slab is taken to be symmetric as illustrate
Fig. 1. The compressible plasma is described by the eq
tions of ideal MHD. Remembering that we have assume
uniform flow and equilibrium magnetic field whereB0

5(0,0,B0),v05(0,0,v0), the linearized equations of idea
MHD can be written,

r0

]v1

]t
1r0v0

]

]z
v152“p11~“3B1!3

B0

m0
, ~1!

]B1

]t
5“3~v13B0!1“3~v03B1!, ~2!

]r1

]t
1v0

]r1

]z
1r0~“–v1!50, ~3!

where equilibrium quantities have a subscript ‘‘0’’ and pe
turbed quantities a subscript ‘‘1.’’ The perturbed quantiti
0
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will be assumed to have a variationf (x)expi(kz2vt). With
this assumption and also assuming an isothermal equatio
state,

p15cs
2r1 , ~4!

wherecs is the sound speed, all variables can be expresse
terms ofB1x which satisfies the equation

F v̄2k2cs
2

~v̄22k2cs
2!

1k2cA
2Gd2B1x

dx2
1~v̄22k2cA

2 !k2B1x50, ~5!

wherev̄5v2kv0 . We note, in passing, that the fieldsv1y

andB1y decouple from the present problem. These variab
are associated with the shear Alfve´n wave, whereas Eq.~5!
describes the fast and slow magnetosonic waves. The inc
pressible result is obtained from Eq.~5! by taking the limit
cs→`, when the equation reduces to Eq.~2! of Ref. 8. How-
ever, for a low-beta plasma,cs!cA , which is very different
from the incompressible limit.

It is convenient to write Eq.~5! in the alternative form,

d2B1x

dx2
1

k2~v̄22k2cA
2 !~v̄22k2cs

2!

$v̄2k2cs
21k2cA

2~v̄22k2cs
2!%

B1x50. ~6!

III. THE BOUNDARY CONDITIONS

The solution for the perturbed magnetic field,B1x given
by Eq.~6! must be matched to the corresponding solutions
the vacuum regions and the resistive wall. The plasma ex
in the region2g<x<g, where the solution is

B1x
p 5A1eibx1A2e2 ibx, ~7!

where

b25
~v̄22k2cA

2 !~v̄22k2cs
2!

v̄2cs
21cA

2~v̄22k2cs
2!

. ~8!

In vacuum,B1x satisfies

d2B1x

dx2
2k2B1x50. ~9!

Hence, in the regiong<x<d,

B1x
v 5Cekx1De2kx. ~10!

FIG. 1. Symmetric, finite slab configuration in which the plasma, vacu
and resistive wall regions extend to infinity in they- andz-directions.
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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Similarly, in the region,2d<x<2g,

B1x
v 5Eekx1Fe2kx. ~11!

For x>d1d, whered is the thickness of the, thin, resistiv
wall,

B1x
v 5Ge2kx ~12!

and forx<2d2d,

B1x5Hekx. ~13!

The above fields and their derivatives must be join
across the plasma vacuum interfaces atx56g and the resis-
tive walls atx56d. The boundary conditions at a thin re
sistive wall are7

B1x continuous, and

dB1x

dx U
d

d1d

5
2 iv

cW
B1x , ~14!

where

cW5~m0sd!21. ~15!

Turning to the plasma–vacuum interface,B1x is again
required to be continuous. The final condition can be o
tained by integrating thex-component of Eq.~1! across the
interface, giving,

p11
B0

p

m0
B1zU

x56g2

5
B0

v

m0
B1zU

x56g1

, ~16!

where the quantities on the left-hand side of the equa
refer to the plasma and those on the right-hand side to
vacuum.

We note that since there is an equilibrium pressure d
continuity there will therefore be a jump inB0 at the plasma
vacuum interface. This can be obtained from the equation
the equilibrium pressure balance,

d

dx S p01
B0

2

2m0
D 50. ~17!

Integrating Eq.~17! across the plasma–vacuum interfa
gives,

p01
~B0

p!2

2m0
5

~B0
v!2

2m0
. ~18!

“.B150 gives the relation

B1z
v 5

i

k

dB1x
v

dx
, ~19!

for the vacuum and a similar result for the plasma,

B1z
p 5

i

k

dB1x
p

dx
. ~20!

With the aid of Eqs.~1!–~3!, p1 can also be expressed i
terms ofB1x ,

p15
ir0v̄2cs

2

kB0
p~v̄22k2cs

2!

dB1x
p

dx
. ~21!

Substituting Eqs.~19!–~21! into Eq. ~16! gives,
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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r0v̄2cs
2

kB0
p~v̄22k2cs

2!

dB1x
p

dx
1

B0
p

m0k

dB1x
p

dx
U

x56g2

5
B0

v

m0k

dB1x
v

dx
U

x56g1

. ~22!

For low beta, with 2m0p0!(B0
p)2, Eq. ~18! can be written

B0
v.B0

pF11
m0p0

~B0
p!2G . ~23!

Substituting Eq.~23! into Eq. ~22!, the final form of the
second plasma–vacuum interface boundary condition is

F v̄2cs
2

~v̄22k2cs
2!

1cA
2G dB1x

p

dx
U

x56g2

5~cA
21cs

2!
dB1x

v

dx
U

x56g1

.

~24!

IV. THE DISPERSION RELATION

Applying the boundary conditions given in the previo
section, the dispersion relation can be written as

X2e2ibg2Y2e22ibg50, ~25!

where

X5
Fib

k
2~cA

21cs
2!Gc , ~26!

Y5
Fib

k
1~cA

21cs
2!Gc , ~27!

F5
v̄2cs

2

~v̄22k2cs
2!

1cA
2, ~28!

and

Gc5
$e22k(d2g)1~11 ~2ikcW /v!!%

$e22k(d2g)2~11 ~2ikcW /v!!%
. ~29!

Clearly, Eq.~25! can be factorized into two independent d
persion relations,

Xeibg2Ye2 ibg50 ~30!

and

Xeibg1Ye2 ibg50. ~31!

A physical distinction between the two dispersion re
tions given by Eqs.~30! and~31! can be obtained as follows
The solution for the perturbed magnetic field compone
B1x

p , in the plasma is given by Eq.~7!. The value of this
quantity at the origin is

B1x
p ~0!5A11A2 ~32!

and its derivative is

dB1x
p ~0!

dx
5 ib~A12A2!. ~33!

By imposing the boundary conditions, en route to o
taining the dispersion relation, Eq.~25!, the following rela-
tion betweenA1 andA2 can be found
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
-
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A25
YA1

X
e22ibg. ~34!

With the aid of this relation, Eqs.~32! and~33! can be writ-
ten

B1x
p ~0!5

A1

X
e2 ibg~Xeibg1Ye2 ibg!, ~35!

dB1x
p ~0!

dx
5

ibA1

X
e2 ibg~Xeibg2Ye2 ibg!. ~36!

Hence, the dispersion relation given by Eq.~30! de-
scribes modes for which the perturbed magnetic fieldB1x is
symmetric (dB1x

p (0)/dx50) about the origin whilst Eq.~31!
describes modes for whichB1x

p is antisymmetric (B1x(0)
50).

With the aid of Eqs.~8! and ~26!–~28!, and noting that
F5(v̄22k2cA

2)/b2, Eqs.~30! and ~31! can be written

2
bk

~v̄22k2cA
2 !

5
tanbg

Gc~cA
21cs

2!
~SYMMETRIC! ~37!

and

~v̄22k2cA
2 !

bk
5Gc~cA

21cs
2!tanbg~ANTISYMMETRIC!.

~38!

FIG. 2. Graphical solutions of the symmetric, Eq.~43!, and antisymmetric,
Eq. ~45!, marginal stability conditions. (bg)S is the root of the symmetric
equation and (bg)AS the antisymmetric root.
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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The physical content of the dispersion relations given
Eqs. ~37! and ~38! can be best understood by consideri
various approximate solutions.

A. Alfvé n wave case

Assuming thatv̄;kcA , v0;cA and using the low-beta
conditioncs!cA , Eq. ~8! is approximated by

b2.
~v̄22k2cA

2 !

cA
2

. ~39!

Substituting Eq.~39! into Eq. ~37! and neglectingcs
2 in

comparison tocA
2 , the symmetric dispersion relation is a

proximated by

2
kg

bg
5

tanbg

Gc
. ~40!
de

e

s

f

es

Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
ySubstituting Eq.~29! for Gc into Eq. ~40!, the dispersion
relation can be expressed in the form

H @11e22k(d2g)#
kg

bg
2@12e22k(d2g)#tanbgJ v

522ikcwS kg

bg
2tanbgD . ~41!

In general, thev-solution to Eq.~41! is v5v r1 ig.
Since all the parameters in Eq.~41! are real, except for the
wall term ikcw , it is clear that the marginal condition,g
50, can only be satisfied whenv r50. For values ofv close
to the marginal solution, Eq.~41! can be solved approxi
mately as
v.
22ikcW@~kg/bg! 2tanbg#

@11e22k(d2g)#$~kg/bg! 2 ~@12e22k(d2g)#/@11e22k(d2g)# !tanbg%
, ~42!

The stability threshold condition,v50, is given from Eq.~42!,

kg

bg
2tanbg50. ~43!

Similarly, the solution to the antisymmetric dispersion relation for values ofv close to the marginal value is

v.
22ikcW@~bg/kg! 1tanbg#

@12e22k(d2g)#$~bg/kg! 1 ~@11e22k(d2g)#/@12e22k(d2g)# !tanbg%
. ~44!
tric
he

ed.
ing
et-
Hence, the threshold condition for the antisymmetric mo
is

bg

kg
1tanbg50. ~45!

The solutions to Eqs.~43! and~45! are shown graphically in
Fig. 2 for the conditionkg51. For the symmetric mode th
solution is given, approximately asbg.0.86. Using Eq.
~39!, this yields

v0.1.3cA , ~46!

which is near to the marginal conditionv05A2cA given in
Ref. 8. The solution of Eq.~45! for the antisymmetric mode
is bg.2 which yields

v05A5cA . ~47!

Returning to Eqs.~42! and ~44!, we consider values o
bg close to the marginal values given by Eqs.~43! and~45!.
It can be seen from Eq.~42! that for bg slightly above the
threshold value, Imv.0, i.e., the symmetric mode becom
unstable with a growth rate proportional tokcW . Similarly,
the antisymmetric mode is unstable for values ofbg slightly
above the threshold value given by Eq.~45! and again the
growth rate is proportional tokcW . Note also that asbg
scontinues to increase, the growth rate of both the symme
and antisymmetric modes formally tends to infinity as t
denominators in Eqs.~42! and~44! tend to zero. Clearly the
approximations break down before this condition is reach

The significance of this behavior is examined by treat
the dispersion relations perturbatively. Consider the symm
ric dispersion relation given by Eq.~40!. Expanding Eq.~29!
for kcW /v!1 we obtain

Gc.2FcH 12
4ikcWe22k(d2g)

v@12e24k(d2g)#
J , ~48!

where

Fc5
@11e22k(d2g)#

@12e22k(d2g)#
. ~49!

Substituting Eq.~48! into Eq. ~40!, the symmetric dis-
persion relation becomes

kg

bg
Fc2tanbg.

4ikcWe22k(d2g)

v@12e24k(d2g)#

kgFc

bg
. ~50!

For kcW /v50, the unperturbed roots of Eq.~50! are
denoted by

bg5an . ~51!
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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Hence, from Eq.~39!, the unperturbed frequencies of th
symmetric Alfvén modes are given by

~v̄22k2cA
2 !g2

cA
2

5an
2. ~52!

Thus, the solutions are

v5kv06kcAS 11
an

2

k2g2D 1/2

, ~53!

where the6 signs correspond to the fast and slow compr
sional Alfvén waves of the bounded system. For small valu
of the parameterkcW /v, a perturbation solution of Eq.~50!
is sought. Assuming
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
-
s

v5kv02kcAS 11
an

2

k2g2D 1/2

1dv ~54!

the perturbed value ofbg is first obtained, giving

bg.anH 12
k2g2

an
2 S 11

an
2

k2g2D 1/2
dv

kcA
J ~55!

and substituting Eqs.~54! and ~55! into Eq. ~50!, the per-
turbed frequencydv is obtained
e slow

d

the

ncy
f Eq.
s,
with
dv

kcA
.

4ikcWe22k(d2g)~kg/an!Fc

@kv02kcA~11 ~an
2/k2g2!!1/2#@12e24k(d2g)#~k2g2/an

2! ~11~an
2/k2g2!!1/2@~kg/an! Fc1an sec2 an#

. ~56!

Hence, the slow compressional Alfve´n wave is unstable when

v0.cAS 11
an

2

k2g2D 1/2

.

The growth rate is again proportional to the wall resistivity but the mode now oscillates at the frequency of th
Alfvén wave. This instability is analogous to the resistive wall amplifier of Birdsallet al.9 The interpretation of this instability
is that the slow Alfve´n wave is a negative energy mode whenv0.cA(11an

2/k2g2)1/2. Hence, due to the dissipation provide
by the resistive wall, the wave is caused to grow.

With the aid of this interpretation, Eq.~42! for the symmetric mode can be analyzed in the vicinity of a zero of
denominator. For this purpose, Eq.~42! is written in the form

vS kg

bg
2

tanbg

Fc
D52

2ikcW@~kg/bg! 2tanbg#

@11e22k(d2g)#
. ~57!

It has just been noted that the zeros of the bracket on the left-hand side of Eq.~57!,

kg

bg
2

tanbg

Fc
50 ~58!

describe the fast and slow compressional Alfve´n waves. The critical condition for the slow wave occurs when the freque
of this mode passes through zero, corresponding to a change in sign of the energy. Hence, a perturbation solution o~57!
is sought in which the equation is expanded about the valueb5b0 for which the slow wave has zero frequency. Thu
substitutingb5b0 in the right-hand side of Eq.~57!, the equation describes the coupling of the zero frequency wall mode
the zero frequency slow Alfve´n wave. Forkg51, kd51.5493 a graphical solution of Eq.~58! gives the valueb051.06. The
flow corresponding to a zero frequency slow Alfve´n wave isv051.46cA . Hence, again making use of Eqs.~54! and~55! and
expanding Eq.~57! aboutbg5b0g, the equation becomes

~dv!2. ig2, ~59!

where

g25
2kcWkcA@ tanb0g2~kg/b0g!#

@11e22k(d2g)#~k2g2/b0
2g2! @11 ~b0

2g2/k2g2!#1/2@~kg/b0g! 1~b0g/Fc!sec2 b0g#
, ~60!

and Eq.~58! has again been used to obtain Eq.~59!. Hence, the solution of Eqs.~42! or ~57! in the vicinity of b5b0 is given
approximately by

dv.6
g

A2
~11 i !. ~61!

A numerical solution of Eq.~37! is given in Figs. 3~a!
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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and 3~b!. The growth rate and frequency normalized tokcs

are plotted as a function of the normalized flow veloc
v0 /cs . It can be seen that close to the threshold, the real
of the frequency is very small, which is characteristic of t
wall mode. For velocities a little beyond that correspond

FIG. 3. Alfvén wave instability for the parameterskg51, kd51.5493,
cW /cs50.01, and cA /cs510, ~a! Rev/kcs vs v0 /cS , ~b! Im v/kcs vs
v0 /cs .
Downloaded 31 Oct 2012 to 194.81.223.66. Redistribution subject to AIP lic
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to maximum growth the frequency corresponds to the s
Alfvén wave value given by the negative sign in Eq.~53!.
The growth rate as a function of the flow velocity rises to
maximum just above the threshold and then falls off asv0

21

in agreement with the perturbation result given by Eq.~56!.
Substituting the values of the parameters used to com
Figs. 3~a! and 3~b! into Eq. ~61! yields the valuev/kcs

50.12(11 i ) which is in very good agreement with the com
puted values corresponding to maximum growth, given
Figs. 3~a! and 3~b!. Similarly, Eq. ~56! yields v/kcs55.4
10.0064i for v0 /cA52 which is again seen to be in exce
lent agreement with the numerical values.

This behavior suggests the possibility of a correspond
instability associated with the slow magnetosonic wave o
compressible plasma, except that the critical velocity wo
be associated with the much smaller sound speed rather
the Alfvén speed.

B. Sound wave case

Returning to the form of the dispersion relation given
Eq. ~37! ~the symmetric modes! and assumingv̄!kcA , the
equation becomes

bg

kg
.

tanbg

Gc
. ~62!

Substituting Eq.~29! for Gc into Eq. ~62! and proceed-
ing as for Sec. IV A, we obtain a solution ofv which is valid
in the vicinity of the marginal condition,v50. Thus,
he

h

v5
22ikcW@~bg/kg! 1tanbg#

@11e22k(d2g)#$~bg/kg! 1 ~@12e22k(d2g)#/@11e22k(d2g)# !tanbg%
, ~63!

where cs
2 has again been neglected in comparison withcA

2 . The marginal condition is again given by the zeros of t
numerator,

bg

kg
1tanbg50. ~64!

Choosingkg51, the marginal condition is given approximately byv05cs . For values ofbg just below the threshold
value given by Eq.~64! we again have instability with a growth rate proportional tokcW . As for the previous case the growt
rate becomes infinitely large when the denominator for Eq.~63! becomes zero.

For the antisymmetric modes, Eq.~38!, the low frequency assumption,v̄!kcA reduces the dispersion relation to

2
kg

bg
5Gc tanbg. ~65!

Substituting forGc from Eq. ~29!, the solution forv which is valid in the vicinity of the marginal condition,v50, is
given by

v5
22ikcW@~kg/bg! 2tanbg#

@12e22k(d2g)#$~kg/bg! 2 ~@11e22k(d2g)#/@12e22k(d2g)# !tanbg%
. ~66!
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The threshold condition is therefore

kg

bg
2tanbg50, ~67!

which, for kg51, also yields the marginal conditionv0

5cs . The antisymmetric mode is unstable for values ofbg
just above the threshold value given by Eq.~64! with a
growth rate proportional tokcW .

We note that the approximate analysis of the sound
stability neglects terms 0(cs

2/cA
2). Hence, the threshold ve

locities for the symmetric and antisymmetric modes are
same.

Now consider the significance of the infinite grow
rates arising from the zeros of the denominators in Eqs.~63!
and~66!. It is convenient to analyze the antisymmetric mo
in this case. Thus, the approximate form ofGc for kcW /v
!1 given by Eq.~48! is substituted into Eq.~65!, yielding

kg

bg
2Fc tanbg5

24ikcWe22k(d2g)

v@12e24k(d2g)#
Fc tanbg. ~68!

A perturbation solution of Eq.~68! is now sought. For
kcW /v50, the unperturbed solution of Eq.~68! is denoted
by
d-

all
ty.
a
F
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bg5bn ~69!

and the unperturbed frequencies are

v5kv06kcsa, ~70!

where

a25
~11bn

2/k2g2!

@11bn
2/k2g21~bn

2/k2g2!~cs
2/cA

2 !#
. ~71!

The6 solutions, Eq.~70!, are referred to as the fast an
slow sound waves. Looking for a perturbation solution of E
~68!, we take

v.kv02kcsa1dv. ~72!

Substituting Eq.~72! into Eq.~8! and using the condition
v̄2!k2cA

2 , the perturbed form ofbg is

bg.bnH 11
2cA

2

cs
2

~k2g21bn
2!2

k2g2bn
2

dv

kcs
J . ~73!

Substituting Eqs.~72! and ~73! into Eq. ~68!, the result-
ing correction to the slow sound wave frequency is obtain
dv

kcs
.

4ikcWe22k(d2g)Fc~cs
2/2cA

2 !k2g2bn
2 tanbn

k~v02acs!@12e24k(d2g)#~k2g21bn
2!2@~kg/bn!1Fcbn sec2 bn#

. ~74!
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Hence, the slow sound wave is unstable whenv0.acs

wherea is approximately unity. The behavior of the soun
type resistive wall instability is similar to the Alfve´n case.
Thus, very close to the threshold velocity,v05cs , the insta-
bility has a very low frequency characteristic of the w
mode, with a growth rate proportional to the wall resistivi
The maximum growth occurs when the zero frequency w
mode couples to the zero frequency slow sound wave.
velocities just above the velocity at which maximum grow
occurs, the instability is associated with the slow sou
wave, oscillating with the frequency of this mode. For t
sound wave case, the coupling of the slow sound wave w
the wall mode occurs much closer to the threshold than
the Alfvén case. In order to carry out an analytic calculati
of the behavior of the instability at maximum growth, th
analysis would need to include the previously neglec
terms, 0(cs

2/cA
2). For this case we give just the numeric

solution of the antisymmetric dispersion relation. The resu
are shown in Fig. 4~a! ~real part ofv/kcs) and Fig. 4~b!
~imaginary part ofv/kcs) as a function of the normalize
flow velocity v0 /cs .

V. THE EFFECT OF LANDAU DAMPING

The resistive wall instability discussed in Sec. IV B
associated with the slow magnetosonic wave and oc
when the flow speed exceeds the sound speed. Such fl
ll
or

d

th
r

d

s

rs
ws

are relevant to the present generation of tokamaks. Howe
the ideal MHD model used in the previous section does
include dissipation. The condition for weakly damped sou
waves isTe@Ti , whereas under normal tokamak condition
Te;Ti , when the slow magnetosonic mode undergo
strong ion Landau damping.

In view of this we introduce Landau damping into o
model. Since the dominant kinetic effects for the slow ma
netosonic mode are due to the thermal motion parallel to
equilibrium magnetic field, we take advantage of our u
form slab model to incorporate the parallel kinetic effects
an approximate manner. We ignore the effect of the bou
aries on the electron and ion distribution functions. Inste
we use the dielectric tensor for a hot, uniform plasma
obtain a generalization of Eq.~6! for the perturbed magnetic
field. We also need to include kinetic effects in the perturb
pressure, given by Eq.~21!.

The equation describing the perturbed magnetic fi
componentB1x , can be obtained from Maxwell’s equation
and the hot plasma dielectric tensor for a uniform plasm
Following Shafranov10 we obtain, for low frequencies (v
!V i),

S ni
22exx 0 0

0 n22eyy 2eyz

0 eyz n'
2 2ezz

D S E1x

E1y

E1z

D 50, ~75!
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wheren25n'
2 1ni

2 ,n'
2 5c2k'

2 /v2 andni
25c2k2/v2. As be-

fore, the shear Alfve´n wave, (ni
22exx)E1x50, decouples

from the fast and slow magnetosonic waves, described b

~n22eyy!E1y2eyzE1z50, ~76!

eyzE1y1~n'
2 2ezz!E1z50. ~77!

For low frequencies,n'
2 !ezz, when Eq.~77! yields

E1z.
eyzE1y

ezz
. ~78!

Hence, from Eqs.~76! and ~78!,

S n'
2 1ni

22eyy2
eyz

2

ezz
DE1y50. ~79!

The dielectric tensor elements for the low frequency c
can be approximated by~see, for example, Stix11 and
Swanson12!,

eyy.
vpi

2

V i
2

[
c2

cA
2

, ~80!

FIG. 4. Sound wave instability for the same parameters as Fig. 3,~a!
Rev/kcs vs v0 /cs , ~b! Im v/kcs vs v0 /cs .
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eyz.
ivpi

2

vV i

k'

k
@11z iZ~z i !#2

ivpe
2

vVe

k'

k
@11zeZ~ze!#,

~81!

ezz.11
2vpi

2

k2vTi
2 @11z iZ~z i !#1

2vpe
2

k2vTe
2 @11zeZ~ze!#,

~82!

where z j5v/kvT j , ‘‘ j ’’ denotes either ions or electrons
vT j5(2Tj /mj )

1/2, andZ(z j ) is the plasma dispersion func
tion.

For sound wave frequencies,ze!1 and z i@1 if Te

@Ti . WhenTi;Te , z i;1. Hence we retain the full plasm
dispersion function for the ions ineyz ,ezz but neglect the
very weak electron Landau damping sinceze!1. Under
these conditions, Eqs.~81! and ~82! can be further approxi-
mated to

eyz.
ivpi

2

vV i

k'

k
z iZ~z i !, ~83!

ezz.
2vpi

2

k2vTi
2 F11z iZ~z i !1

Ti

Te
G . ~84!

Substituting Eqs.~83! and ~84! into Eq. ~79!, we obtain

k'
2 E1y2

~v22k2cA
2 !@11z iZ~z i !1 ~Ti /Te!#

$cA
2@11z iZ~z i !1~Ti /Te!#1 ~vTi

2 /2! z i
2Z2~z i !%

E1y

50. ~85!

Taking the inverse Fourier transform and using the Ma
well equation,B1x52(k/v)E1y , we obtain the generaliza
tion of Eq. ~6!,

d2B1x

dx2
1

~v22k2cA
2 !@11z iZ~z i !1 ~Ti /Te!#

$cA
2@11z iZ~z i !1 ~Ti /Te!#1~vTi

2 /2! z i
2Z2~z i !%

B1x

50. ~86!

In the limit Te@Ti , where z i@1, 11z iZ(z i)
;2k2vTi

2 /(2v2), z iZ(z i);21, and Eq.~86! reduces to Eq.

~6!. Thus, Eq.~86! extends the previous model to include th
effect of ion Landau damping.

To complete this extension of the MHD model we mu
also obtain the kinetic generalization of Eq.~21! for the per-
turbed pressure. The pressure tensor is given by

p5mjE ~ f 0 j1 f 1 j !~v2u!~v2u!dv, ~87!

whereu5*( f 0 j1 f 1 j )vdv.
We will simplify this calculation by assuming that th

plasma is stationary with a Maxwellian distribution. In th
case,* f 0 jvdv50, so thatu is a first order quantity in the
perturbed amplitude and does not contribute to the pertur
pressure within a linear analysis. We must therefore evalu

p1xx
j 5mjE f 1 jvx

2dv. ~88!

We use the perturbed distribution functionf 1 j given by
Swanson12
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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f 1 j~k,v,v!52
iq j

mj
(

m52`

`

(
n52`

`
Jm~b!ei (m2n)f

~v2envc j2kvz!

3H nJn~b!

b F f 0'1
k

v
~v' f 0z2vzf 0'!GE1x

1 iJn8~b!F f 0'1
k

v
~v' f 0z2vzf 0'!GE1y

1Jn~b!F f 0z2
envc j

v
~ f 0z

2 ~vz /v'! f 0'!GE1zJ , ~89!

where

f 0'[
] f 0 j

]v'

, f 0z[
] f 0 j

]vz
, b5ek'v' /vc j ,

e5qj /uqj u, k5~k' ,0,k!,

vx5v' cosf and vy5v' sinf.

The dominant contribution comes from then50 terms
and is

p1xx
j .2 iq jpE

2`

` E
0

`

v'
3 S 2

2

b
J08~b! D

3J0~b!dv'

~] f 0 j /]vz!

~v2kvz!
dvzE1z , ~90!

where the integration overf has been carried out. Assumin
ubu!1, and carrying out the remaining velocity–space in
grations,

p1xx
j 5

2 iq jn0 jE1z

k
@11z jZ~z j !#. ~91!

Using Eq.~78! and the relation betweenE1y andB1x ,

E1z52
eyz

ezz

v

k
B1x . ~92!

Substituting Eq.~92! into Eq. ~91!,

p1xx
j 5

iq jn0 j

k

eyz

ezz

v

k
@11z jZ~z j !#B1x . ~93!

Assuming cold ions for the moment and again usingze!1 to
neglect the weak electron Landau damping contribution,

p1xx
e .

2 ien0e

k

eyz

ezz

v

k
B1x , ~94!

wheree is the proton charge. For the conditions just stat
Eqs.~81! and ~82! give

eyz

ezz

.2
i

2

k'kvTe
2 v

~v22k2cs
2!Ve

. ~95!
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Substituting Eq.~95! into Eq. ~94! and usingk'B1x

52 i (dB1x /dx), we obtain

p1xx
e .

ir0v2cs
2

kB0
p~v22k2cs

2!

dB1x

dx
, ~96!

which is in agreement with Eq.~21!, obtained from the MHD
model.

Returning to the kinetic expression, Eq.~91!, and now
including the effect of hot ions, we write

p1xx5
ien0E1z

k
2

ien0E1z

k
@11z iZ~z i !#, ~97!

where we have again neglected the weak electron Lan
damping. For this case,

eyz

ezz

.
~ ivpi

2 /vV i !

~2vpi
2 /k2vTi

2 !

~k' /k! z iZ~z i !

@11z iZ~z i !1~Ti /Te!#
. ~98!

Proceeding as before, we obtain

p1xx5
i

2

r0vTi
2

kB0
p

z i
2Z2~z i !

@11z iZ~z i !1 ~Ti /Te!#

dB1x

dx
. ~99!

In the limit, z i@1, Eq.~99! reduces to Eq.~21! obtained
from the MHD model. We are now in a position to derive th
generalization of the dispersion relation obtained in Sec.
to include the effect of ion Landau damping. The proced
is identical to that used in Sec. IV except Eqs.~86! and~99!
are used instead of Eqs.~6! and ~21!. The resulting disper-
sion relation is formally the same as before, Eq.~25!, which
factors into the symmetric, Eq.~30!, and antisymmetric, Eq
~31!, dispersion relations. The only difference is that t
quantityF is no longer given by Eq.~28!, but instead by

F5
vTi

2 z̄ i
2Z2~ z̄ i !

2@11 z̄ iZ~ z̄ i !1 ~Ti /Te!#
1cA

2 ~100!

andb2 is now,

b25
~v̄22k2cA

2 !@11 z̄ iZ~ z̄ i !1 ~Ti /Te!#

$cA
2@11 z̄ iZ~ z̄ i !1 ~Ti /Te!#1 ~vTi

2 /2!z̄ i
2Z2~ z̄ i !%

,

~101!
instead of Eq.~8!. We note that the generalized equations
B1x , Eq. ~86!, and the pressurep1xx , Eq. ~99!, have been
derived for a stationary plasma. In order to relate to Sec.
where the plasma is flowing, we have Doppler shifted
frequencies occurring in Eqs.~100! and ~101!. Thus, z̄ i

5(v2kv0)/kvTi
and v̄ has already been defined after E

~5!.
Let us now obtain solutions of the antisymmetric disp

sion relation which is still given by Eq.~38!, except thatb2

is now given by Eq.~101!. For the slow magnetosoni
~sound! wave case the dispersion relation again reduces
Eq. ~65!. We now consider this case under conditions wh
Te@Ti so that the ion Landau damping is weak and we c
obtain a perturbation solution. First, we expand Eq.~101!
asymptotically assumingz̄ i@1,
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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b2.
2k2cA

2@v̄22k2cs
21 ip1/2v̄2z̄ i~Te /Ti !e

2 z̄ i
2
#

$cA
2@v̄22k2cs

21 ip1/2v̄2z̄ i~Te /Ti !e
2 z̄ i

2
#1v̄2cs

2@211 ip1/2z̄ ie
2 z̄ i

2
#2%

. ~102!
in

t
e

di
th
of

Eq

ea

of
b2 is now in a very similar form to the expression given
Eq. ~8! except that Eq.~102! contains the effect of weak ion
Landau damping. In order to obtain a perturbation solution
Eq. ~65! including the effect of ion Landau damping, w
again assume thatkcw!1 and use the approximation toGc

given in Eq.~48!. Thus, treating bothkcw and the ion Lan-
dau damping as small perturbations to the antisymmetric
persion relation, the unperturbed equation is given by
left-hand side of Eq.~68! and the unperturbed frequencies
the fast and slow sound waves are as shown in Eq.~70!.
Substituting the perturbed slow sound wave solution,
~72!, into Eq.~102!, we obtain the perturbed value ofbg due
to the presence of the resistive wall perturbation and w
damping,

bg.bnS 11A
dv

kcs
1 id D , ~103!

wherebn are the roots of the unperturbed equation

A5
a

~12a2!
1

a@11 ~cs
2/cA

2 !#

@a21a2~cs
2/cA

2 ! 21#
, ~104!

and

d52p1/2H a2

~12a2!

Te

2Ti
1

a2

@a21a2 ~cs
2/cA

2 ! 21#

3S Te

2Ti
2

cs
2

cA
2 D J z̄ ie

2 z̄ i
2
. ~105!
ng
w

ve

-
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Substituting Eqs.~48! and~103! into Eq.~65!, we obtain
the perturbed dispersion relation,

kg

bn@11A ~dv/kcs! 1 id#
2Fc tanFbnS 11A

dv

kcs
1 id D G

.2
4ikcWe22k(d2g)

~kv02kcsa!@12e24k(d2g)#
Fc tanbn , ~106!

where only the unperturbed values ofv and bg have been
substituted into the term proportional tokcW , since this is a
perturbation. Expanding the terms on the left-hand side
Eq. ~106! for small dv/kcs and smalld, we obtain

kg

bn
S 12A

dv

kcs
2 id D2Fc tanbn2FcbnS A

dv

kcs
1 id D sec2bn

52
4ikcWe22k(d2g)Fc tanbn

~kv02kcsa!@12e24k(d2g)#
. ~107!

Making use of the unperturbed equation, (kg/bn)
2Fc tanbn50, Eq. ~107! yields the solution fordv,
dv

kcs
.

4ikcWe22k(d2g)Fc tanbn

~kv02kcsa!@12e24k(d2g)#A@~kg/bn! 1bnFc sec2 bn#
2

id

A
. ~108!

Substituting Eqs.~104! and ~105! into Eq. ~108! and the resultz̄ i.2(Te/2Ti), we obtain the final form fordv,

dv

kcs
.

4ikcWe22k(d2g)Fc~cs
2/2cA

2 !k2g2bn
2 tanbn

k~v02acs!@12e24k(d2g)#~k2g21bn
2!2@~kg/bn!1bnFc sec2 bn#

2
ip1/2

2 S Te

2Ti
D 3/2

e2 ~Te /2Ti !. ~109!
ugh

is

ngly
Hence, asTe /Ti decreases, the ion Landau dampi
term becomes stronger and for some critical value the gro
rate will be zero. For still smaller values ofTe /Ti the resis-
tive wall instability associated with the slow sound wa
becomes stable.

This behavior is illustrated in Figs. 5–7 in which nu
merical solutions of the exact dispersion relation, Eq.~38!
with b2 given by Eq.~101!, are displayed. In Fig. 5, the
normalized growth rate is plotted as a function ofvTi /cs for
v0 /cs51.5. AsvTi /cs increases~or equivalently, asTe /Ti
th
decreases! the growth rate also decreases and passes thro
zero whenvTi /cs.0.275. This gives the critical value~re-
ferred to above! Te /Ti.26 for the parameters used. This
in reasonable agreement with Eq.~109! which yields a criti-
cal valueTe /Ti.30 for the same parameters. AsvTi /cs in-
creases further, the mode becomes more and more stro
damped, as shown in Fig. 6.

In the absence of damping~cf. Fig. 4!, the growth rate of
the slow sound wave takes on its maximum value whenv0 is
close to cs . Since Figs. 5 and 6 were obtained forv0
ense or copyright; see http://pop.aip.org/about/rights_and_permissions
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51.5cs , well away from the region of maximum growth, w
have also solved the dispersion relation for the real
imaginary parts of the normalized frequency of the sl
sound wave forvTi /cs50.5 (Te /Ti58) as a function of
v0 /cs . The results are shown in Fig. 7 and it can be seen
the damping rate is now almost constant over the rang
v0 /cs from 1 to 1.5, apart from a very small variation arou
v0.1.2cs .

VI. SUMMARY AND CONCLUSIONS

A sharp boundary, uniform plasma with a uniform flo
along the magnetic field, separated from a resistive wall b

FIG. 5. Sound wave instability with ion Landau damping for same para
eters as Fig. 3,~a! Rev/kcs vs vTi /cs , ~b! Im v/kcs vs vTi /cs near to the
stability boundary.

FIG. 6. Sound wave with ion Landau damping for same parameters as
3, ~a! Rev/kcs vs vTi /cs , ~b! Im v/kcs vs vTi /cs .
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of

a

vacuum region, has been shown to be subject to two in
bilities both of which depend on the wall resistance and
flow. The first instability has a threshold velocity,v0*cA , a
case which has recently been analyzed by Wesson.8 This
instability is associated with the slow, compressional Alfv´n
wave and a resistive wall mode.

The second instability has a threshold,v0.cs and is
associated with the slow sound wave and a resistive w
mode and clearly requires the effect of plasma compress
ity. In both cases, the unstable mode changes its chara
from a zero frequency resistive wall mode close to t
threshold to an oscillatory mode when the flow speed
somewhat above the threshold value. The maximum gro
rates occur when the zero frequency wall mode couple
the zero frequency slow wave~Alfvén or sound!. Under
these circumstances the behavior is more characteristic
reactive or ideal instability than of a dissipative or resisti
one. The oscillatory instabilities, slow Alfve´n or slow sound,
are analogous to the resistive wall amplifier proposed
Birdsall et al.9

In the final part of the above analysis the slow sou
instability has been generalized to include the effect of
Landau damping. This was because the slow magnetos
wave is normally strongly damped by ion Landau damp
whenTi;Te . It was found that since the growth rate of th
resistive wall/slow magnetoacoustic instability is rath
small it is stabilized by weak ion Landau damping. F
strong ion Landau damping, the damping rate of the sl
sound wave is almost independent of the flow speed, ab
or below the sound speed. The inclusion of kinetic ion dam
ing suggests a possible interpretation of the stabilizing ef
of plasma flow.

In the absence of flow, the resistive wall instability o
curs at zero frequency and hence would be insensitive to
Landau damping. It is now clear that the presence of fl
could introduce a damping mechanism to the wall mode

-

ig.

FIG. 7. Sound wave with ion Landau damping for same parameters as
3, ~a! Rev/kcs vs v0 /cs , ~b! Im v/kcs vs v0 /cs .
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Doppler shifting ions into wave-particle resonance with t
mode. In order to produce a noticeable effect, the flow sp
should be a significant fraction of the ion thermal speed.

For the idealized model considered in this paper,
only source of free energy is the flow itself. It would ther
fore be of interest to extend the treatment presented
more realistic model in which free magnetic energy
present.
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