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A uniform compressible plasma with a uniform flow along the magnetic field in the presence of a
resistive wall is shown to be subject to two instabilities. For the first instability, the flow velocity is
required to exceed the Alfwespeed, whereas for the second it need only exceed the sound speed.
For a sufficiently high ion temperature, ion Landau damping is shown to stabilize the second
instability associated with the sound spe€e1070-664X99)03910-5

I. INTRODUCTION ing plasma compressibility contains only undamped fast and
slow magnetosonic waves. The condition for sound waves to

The subject of resistive wall modes has become of in- e weakly damoed is thai.>T. . However. under normal
creasing interest in view of its relevance to the prospects o y damp e ' .
kamak conditionsT.~T,;, and sound waves are heavily

advanced tokamaks. Since the observation of greater stabili amped by ion Landau damping. In the final part of the

to this mode on DIII-D in the presence of toroidal fldw, . . . .
various attempfs’ have been made to find a stabilizing paper I§|net|c effects are incorporated into the cor_npressmle
mechanism due to rotation. modell in order to stg_dy thg .effect of Landau damping on the
In order to clarify the effect of flow, Wessbrhas re- resistive wall instability arising from the slow magnetosonic
' wave. It is found that the instability persists fog=>T; but as

cently analyzed a simple model consisting of the uniform . . .
flow of an incompressible fluid along a uniform magneticTe/Ti IS reduce_q, the lon Lan_dau damping becomes strong
edﬂlough to stabilize the instability.

field in slab geometry. The fluid was assumed to be separate
from a thin, resistive wall by a vacuum region, with a further
vacuum region beyond the resistive wall. In this model the

only source of free energy is the plasma flow. It was showrll. THE COMPRESSIBLE MODEL

that a resistive wall instability occurred when the flow veloc- _ ) )

ity, v, exceeded a critical velocity, i.evy>\2cs, where A plane slab model will again be employed but instead
c, is the Alfven velocity. The existence of a critical velocity, ©f the semi-infinite plasma used in Ref. 8 a finite slab will be
Vo~Ca, in the above model is due to the fact that, apart fromanalyzed. The slab is .taken to be §ymmetr.|c as illustrated in
the wall mode, only compressional Alfvewaves are in- E|g. 1. The compressible plasma is described by the equa-
volved. The shear Alfse wave decouples from the compres- fions of ideal MHD. Remembering that we have assumed a
sional wave in this model. However, a compressible modetniform flow and equilibrium magnetic field wherB,
allows the propagation of the slow magnetosonic wave- (0:0B0),vo=(0,0v0), the linearized equations of ideal
whose phase velocity,, is much lower than the Alfe  MHD can be written,

velocity under low beta conditions. In view of this, the

analysis given in Ref. 8 has been extended to the case of a A% Jd Bo

compressible plasma. Pog TPoVog V1= VPt (V xBl)xE, @
The compressible model, with the plasma flowing along

the equilibrium magnetic field includes the resistive wall in- ;g

stability discussed in Ref. 8, for which the critical flow speed e V X (v1XBg)+V X (vgXBy), (2)

is of the ordery2c,. However, an additional resistive wall
instability is found which occurs at the much lower critical
flqw speeq,cs. Toroidal flow speeds of the order of thg AI— @+vo%+po(v-vl)=0, )
fven velocity are not relevant to present tokamak conditions. at Jz

On the other hand, toroidal flows of the order of the sound

speed are much closer to observed values. where equilibrium quantities have a subscript “0” and per-

The ideal magnetohydrodynam{MHD) model includ-  turbed quantities a subscript “1.” The perturbed quantities

1070-664X/99/6(10)/3990/12/$15.00 3990
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Resitvowall z | Restsiveoal S|m||ar|y, in the regiorh_ a=x=- g,
(N} 1 1 il
' : : | Y =Ee¥+Fe ¥, (12)
[} 1 1 [N
Vacuus Vacuu Plapm: Vi m | | Vacuum . . . . .
e ™ T For x=d+ 8, wheresd is the thickness of the, thin, resistive
wall,
, vV o_ —kx
-(d+8)| |-d g 0 g di|d+s * le_ Ge (12)
4 4 and forx<—d— 4,
Uniform velocity Tve
Uniform magnetic field TBO le: H ekx. (13)

1 [N}

i ¥ The above fields and their derivatives must be joined
across the plasma vacuum interfaceg=att g and the resis-

FIG. 1. Symmetric, finite slab configuration in which the plasma, vacuumtive walls atx=*d. The boundary conditions at a thin re-

and resistive wall regions extend to infinity in tige and z-directions. sistive wall aré

B,, continuous, and

: : Uniform density and pressure
I +
I i

will be assumed to have a variatidx) expi(kz— wt). With dByx dw: o B (14
this assumption and also assuming an isothermal equation of ~ dx |, cw X
state,
where
p1= Cgpl! (4) -1
cw=(uogod) L. (15

wherec; is the sound speed, all variables can be expressed in

terms ofB,, which satisfies the equation Turning to the plasma—vacuum interfad®,, is again

required to be continuous. The final condition can be ob-

w2k?c? B, _ tained by integrating th&-component of Eq(1) across the
— 5 +k’cj — 2 +(w?—k%c3)k?B1,=0, (5 interface giving
(w?—k>2ck) dx? ' '
_ _ _ _ BY Bo
wherew=w—Kkvy. We note, in passing, that the fields, p1+—By, =—By, : (16)
andB;, decouple from the present problem. These variables Ko x=%g~ 0 x=+g*

are associated with the shear Alfveiave, whereas Eq5)  where the quantities on the left-hand side of the equation

describes the fast and slow magnetosonic waves. The incorfefer to the plasma and those on the right-hand side to the
pressible result is obtained from E@) by taking the limit  yacuum.

cs—, when the equation reduces to E2) of Ref. 8. How- We note that since there is an equilibrium pressure dis-
ever, for a low-beta plasmas<c,, which is very different  continuity there will therefore be a jump By at the plasma
from the incompressible limit. vacuum interface. This can be obtained from the equation for

It is convenient to write Eq(5) in the alternative form,  the equilibrium pressure balance,

d?By, KA’ k2ci><$ e o g © d B | _, .

A {wk2c2+Kec(w2—K2cd)) dx | Po™ 2uo) 7
Integrating Eq.(17) across the plasma—vacuum interface

I1l. THE BOUNDARY CONDITIONS gives,

The solution for the perturbed magnetic fieR},, given (B)? (BY)?
by Eq.(6) must be matched to the corresponding solutions in ~ Po™t —ZMo = —2#0 . (19
the vacuum regions and the resistive wall. The plasma exists ) )
in the region—g=<x=<g, where the solution is V.B;=0 gives the relation

BY =A.eP+A_e 1A 7 gy | 9Bux 19

27k dx

where

_ _ for the vacuum and a similar result for the plasma,
(0?—k?c3)(w?—k3c?) P

B2= i (8) i dB?
w?c2+ci(w?—Kk3cd) BP,—— % d;x _ (20)
In vacuum,B,, satisfies ' . .
1x With the aid of Eqs.(1)—(3), p; can also be expressed in
d?B, terms ofB,,
—k?B,=0. 9 _
dX ipow?c?  dB,
Hence, in the regiog=<x<d, pl_kBg(EZ_kZCg) dx @D
B},=Ce*+De . (100 substituting Eqs(19)—(21) into Eq. (16) gives,
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— A
Pszcg dB?x n B_gdB?x : 3 | : |
KBR(@2—kc?) OX  mok dx | . _ | | | 1
| | | {
| f |
BY dBY I | I |
I (22 | 2 | | :
/J“Ok X x=+g* : i I - I
| | |
For low beta, with Zopo<(B5)?, Eq.(18) can be written : : ‘, § :
; I | |
1 , I | |
By~gg| 1+ “oPo). 23) | N | |
py2 ' { ! 1
(BO) : ] 1/Bg | |
Substituting Eq(23) into Eq.(22), the final form of the | :(ﬁg)AS ‘ :
second plasma—vacuum interface boundary condition is - (B=g) et T e Pe
o | S [ | !
2.2 p \Y [ i |
w“Cg 2 dB7y, =(C2+C2) 1x : : J :
(az_kzcg) A dx X=*g~ A dx x=xg* : -1 ‘ \ |
(24) & B\ | I !
| § | I |
| |
IV. THE DISPERSION RELATION : : 1 :
|
Applying the boundary conditions given in the previous | 2 | : i
section, the dispersion relation can be written as | | | |
X2e21B9_ y2g-21Bg— 0, (25) : : l :
! -3 ! | I
where ! ' \ ‘
Fig S
X=——— (CA+ (;S)GC , (26) FIG. 2. Graphical solutions of the symmetric, E43), and antisymmetric,
k Eq. (45), marginal stability conditions.£g)s is the root of the symmetric
. equation and 89g) as the antisymmetric root.
Fip s 2
Y= T(CAtc)Ce, 27
2.2
w“Cg 2 YA, .
F=— = 42, (28) A_=— g 29, 34
(0?—K2?) A X (34)
and With the aid of this relation, Eq$32) and(33) can be writ-
—2k(d—g) ; ten
e +(1+ (2ikew/w
G- (8 P (1t (2ikewlw))} 29
{e72Kd=9— (14 (2ikcy/w))} A, . .
o . . Bl(0)=~ e 'PIXePI+Ye '), (39)
Clearly, Eq.(25) can be factorized into two independent dis- X
persion relations, dBP.(0) iBA
. . [ . . .
XeBI—_ye iBI=(Q (30) 1x = &eflﬁg(xelﬁg_yeflﬁg)_ (36)

dx X

and
Hence, the dispersion relation given by H®0O) de-

XePit+ye iPI=0, (81 scribes modes for which the perturbed magnetic figjd is

A physical distinction between the two dispersion rela-symmetric @B}, (0)/dx=0) about the origin whilst E¢31)
tions given by Eqs(30) and(31) can be obtained as follows. describes modes for whicBf, is antisymmetric B1,(0)
The solution for the perturbed magnetic field component=0).

BP,, in the plasma is given by Ed7). The value of this With the aid of Eqgs(8) and (26)—(28), and noting that
quantity at the origin is F=(w?—k?c3)/ B2, Egs.(30) and(31) can be written
p =
BP (0)=A, +A_ (32) g tangg
and its derivative is B (@?—K2c2 - GC(Ci+C§)\SYMMETRIC) (37)
dB?,(0)
X CiB(AL—AL). (33 and
dx
. . . 2 12n2
By imposing the boundary conditions, en route to ob-  (@“—k°Cy -~ 2, 2
taining the dispersion relation, E(5), the following rela- Bk =G¢(Ccat Cs)tanBg(ANTISYMMETRIC).
tion betweerA, andA_ can be found (38
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The physical content of the dispersion relations given bySubstituting Eq.(29) for G, into Eqg. (40), the dispersion
Egs. (37) and (38) can be best understood by consideringrelation can be expressed in the form
various approximate solutions.

A. Alfve n wave case [1+ e‘2k(d‘g)]% —[1-e” 2k(d_g)]tan,39] w

Assuming thaiw ~ kca, Vo~cCa and using the low-beta
conditioncs<c,, Eq.(8) is approximated by

(kg )
_ =—2ikcy| — — )
~ m. (39) 2 CW( B89 tansg

(41
2
B o
Substituting Eq(39) into Eq. (37) and neglecting:? in ~ In general, thew-solution to Eq.(41) is o=w +iy.
comparison tacx, the symmetric dispersion relation is ap- Since all the parameters in E@t1) are real, except for the

proximated by wall term ikc,,, it is clear that the marginal conditiony
K =0, can only be satisfied when, = 0. For values ofv close
_X9_ tanjg to the marginal solution, Eq41) can be solved approxi-
By  Gc

(40)
mately as

—2ikey[ (kg/Bg) —tanBg]

“ T [1re 2O (kg/By) — ([1-e 2 9 [1+e 2@ I)tangg)’ “2
The stability threshold conditiory=0, is given from Eq(42),
kg
B9 —tanBg=0. (43
Similarly, the solution to the antisymmetric dispersion relation for values cfose to the marginal value is
—2ikew[ (Ba/kg) +tanBg] (a4

T[1-e 2O I)(Bgikg) + ([1+e I [1-e 2 I))tanpg)’

Hence, the threshold condition for the antisymmetric modegontinues to increase, the growth rate of both the symmetric
is and antisymmetric modes formally tends to infinity as the
denominators in Eqg42) and(44) tend to zero. Clearly the
@ +tanBg=0. (45) approxim:_atio_n_s break down befor_e this cond_ition is reached.
kg The significance of this behavior is examined by treating
the dispersion relations perturbatively. Consider the symmet-

The solutions to Eq943) and(45) are shown graphically in
Fig. 2 for the conditiorkg=1. For the symmetric mode the
solution is given, approximately a8g=0.86. Using Eg.
(39), this yields

Vozl.&A, (46)

which is near to the marginal conditiony=\2c, given in
Ref. 8. The solution of Eq45) for the antisymmetric modes
is Bg=2 which yields

Vo=1/5Cx. (47)

Returning to Eqs(42) and (44), we consider values of
g close to the marginal values given by E¢3) and(45).
It can be seen from Ed42) that for Bg slightly above the

threshold value, Inm>0, i.e., the symmetric mode becomes

unstable with a growth rate proportional kayy. Similarly,
the antisymmetric mode is unstable for valuesBgf slightly
above the threshold value given by Eg5) and again the
growth rate is proportional t&c,,. Note also that agsg

ric dispersion relation given by E¢40). Expanding Eq(29)
for key/w<<1 we obtain
4ikcye 2Kd-9)

Ce=Fe| 17 e @0y’

(48)

where
[1+e 2k(d-9)]
T[1_e 207

Substituting Eq.(48) into Eq. (40), the symmetric dis-
persion relation becomes

(49

C

g Aikcye 2K@-9 kgF,
—F.—tanBg= .
B9 w[1—e 4d-97 Bg

For kcy /w=0, the unperturbed roots of E¢50) are
denoted by

Bg=a,.

(50

(51)
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1/2
+dw (54)

Hence, from Eq(39), the unperturbed frequencies of the
symmetric Alfven modes are given by w=Kkvyo—KcCa

2

an
L+ gt

(0’ —k*cp)g®

5 aZ. (52)
Ca

the perturbed value g8g is first obtained, giving
Thus, the solutions are

2\ 12
a, ) 2 2 2\ 1/2
1+ ——] (53) _ kg an ow
k’g? Bg_an[l_a_ﬁ(l+k2_g2 k_CA (55

w= kVOi kCA

where the+ signs correspond to the fast and slow compres-

sional Alfven waves of the bounded system. For small values

of the parametekcy,/w, a perturbation solution of E¢50) and substituting Eq954) and (55) into Eq. (50), the per-
is sought. Assuming turbed frequencyw is obtained

Sw dikcye -9 (kg/a,)F,
KCa  [kvo—kea(1+ (al/k?g?) M 2][1—e *-9](k?g%/ad) (1+(ai/k?g?) ] (kg/a,) Fo+a, sed a,]’
Hence, the slow compressional Alivavave is unstable when

aﬁ 1/2
1+ k2_92 .

(56)

V0>CA

The growth rate is again proportional to the wall resistivity but the mode now oscillates at the frequency of the slow
Alfvén wave. This instability is analogous to the resistive wall amplifier of Birdsgéll® The interpretation of this instability
is that the slow Alfve wave is a negative energy mode whey>c,(1+a2/k?g?) 2. Hence, due to the dissipation provided
by the resistive wall, the wave is caused to grow.

With the aid of this interpretation, Eq42) for the symmetric mode can be analyzed in the vicinity of a zero of the
denominator. For this purpose, B42) is written in the form

kg tanpg| _ 2ikewl(kg/Ag) —tanBg] :
B Fo | [1re 2o =7
It has just been noted that the zeros of the bracket on the left-hand side (B7Eq.
kg tangg
= _ =0 58
Ba F. 59

describe the fast and slow compressional Atfweaves. The critical condition for the slow wave occurs when the frequency
of this mode passes through zero, corresponding to a change in sign of the energy. Hence, a perturbation solufidn) of Eq.
is sought in which the equation is expanded about the valag3, for which the slow wave has zero frequency. Thus,
substitutingB= B, in the right-hand side of Eq57), the equation describes the coupling of the zero frequency wall mode with
the zero frequency slow Alfrewave. Forkg=1, kd=1.5493 a graphical solution of E¢68) gives the valug,=1.06. The

flow corresponding to a zero frequency slow Alfverave isv,=1.46, . Hence, again making use of E¢54) and(55) and
expanding Eq(57) aboutBg= B9, the equation becomes

(Sw)?=iy?, (59
where
)2 2kewkeatanBog—(kg/ Bog) ] (60

T[1+e KO0 (k22 B2g?) [1+ (B2GPIK2G?) 17 (Kl Bog) + (Bogl Fo)seC Bog]’

and Eq.(58) has again been used to obtain E80). Hence, the solution of Eq§42) or (57) in the vicinity of 8= B, is given
approximately by

5wzi\/—y§(l+i). (61)

A numerical solution of Eq(37) is given in Figs. 8)
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Re arkes to maximum growth the frequency corresponds to the slow
T @ Alfvén wave value given by the negative sign in E§3).
4 The growth rate as a function of the flow velocity rises to a

maximum just above the threshold and then falls off/g$

in agreement with the perturbation result given by Exf).

2 Substituting the values of the parameters used to compute

Figs. 3a and 3b) into Eq. (61) yields the valuew/kc,

=0.12(1+1i) which is in very good agreement with the com-

0 ; ; ; ; ; ‘ : . ; — o/ puted values corresponding to maximum growth, given in
i Figs. 3a and 3b). Similarly, Eq. (56) yields w/kc,=5.4

+0.0064 for vo/ca=2 which is again seen to be in excel-

Tm o/kes lent agreement with the numerical values.

T () This behavior suggests the possibility of a corresponding
instability associated with the slow magnetosonic wave of a
compressible plasma, except that the critical velocity would
be associated with the much smaller sound speed rather than
the Alfven speed.

34

0.09+

Vo/cs

B. Sound wave case

FIG. 3. Alfven wave instability for the parameteteg=1, kd=1.5493, Returning to the form of the dispersion relation given by
Cw/€s=0.01, andca/c=10, (@ Rewlks vs volcs, (b) Imalke vs 20 (37 (the symmetric modesand assumingo<kc,, the

Ics.
VolCs equation becomes
: Bg tanBg
and 3b). The growth rate and frequency normalizedkimy k_g: S (62
Cc

are plotted as a function of the normalized flow velocity
Vo /Cs. It can be seen that close to the threshold, the real part  Substituting Eq(29) for G, into Eq. (62) and proceed-
of the frequency is very small, which is characteristic of theing as for Sec. IV A, we obtain a solution afwhich is valid
wall mode. For velocities a little beyond that correspondingin the vicinity of the marginal conditionp=0. Thus,

B —2ikey[(Ba/kg) +tanBg]
“T [1+e X 9](Bglkg) + ([1—e *@ 9 [1+e O 9))tanpg}’

(63

where c§ has again been neglected in comparison w:iih The marginal condition is again given by the zeros of the
numerator,

Bg -
k—g+tan,6’g—0. (64)

Choosingkg=1, the marginal condition is given approximately by=c.. For values ofBg just below the threshold
value given by Eq(64) we again have instability with a growth rate proportionaktgy,. As for the previous case the growth
rate becomes infinitely large when the denominator for (E8) becomes zero.

For the antisymmetric modes, E@8), the low frequency assumpti05,< kca reduces the dispersion relation to

k
- B—ngctan,Bg. (69

Substituting forG. from Eg. (29), the solution fore which is valid in the vicinity of the marginal conditiory=0, is
given by

. —2ikewl (kg/Bg) —tanfg] (66
[1-e @ 9){(kg/Bg) — ([1+e 21" 9)[1-e 2 I])tanpg}
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The threshold condition is therefore Bg=b, (69)
% —tanBg=0, (67) ~ @nd the unperturbed frequencies are
w=kvy*rkcsa, (70)

which, for kg=1, also yields the marginal conditiong
=cCs. The antisymmetric mode is unstable for valuesBgf  where
just above the threshold value given by H&4) with a 2o s
growth rate proportional técy . Ve (1+by/k°g%)
We note that the approx;mate analysis of the sound in- [1+b2/k2g?+ (b2/k2g?)(c2/c2)]
stability neglects terms @E/CA). Hence, the threshold ve-
locities for the symmetric and antisymmetric modes are the  The = solutions, Eq(70), are referred to as the fast and
same. slow sound waves. Looking for a perturbation solution of Eq.
Now consider the significance of the infinite growth (68), we take
rates arising from the zeros of the denominators in E8f3.
and(66). It is convenient to analyze the antisymmetric mode
in this case. Thus, the approximate form®f for kcy/w
<1 given by Eq.(48) is substituted into Eq(65), yielding

(71

w=kvyo—KCsa+ dw. (72

Substituting Eq(72) into Eq.(8) and using the condition
w?<k?ci, the perturbed form oBg is
—4ikcye 2K@-9

kg
— —F tanBg= F.tanAg. 68 2¢3 (K2g?+Db?)2% s
c2  k?g%b? K
A perturbation solution of Eq(68) is now sought. For
kcy/w=0, the unperturbed solution of E¢68) is denoted Substituting Eqs(72) and(73) into Eq. (68), the result-
by ing correction to the slow sound wave frequency is obtained
|
Sw dikcye 2KA-9F (c2/2c3)k?g®b? tanb, 74

kes k(vo— acg)[1—e *d-97(k2g?+b2)?[ (kg/b,) + Fcb,seé b,]

Hence, the slow sound wave is unstable whgmacg  are relevant to the present generation of tokamaks. However,
where« is approximately unity. The behavior of the sound- the ideal MHD model used in the previous section does not
type resistive wall instability is similar to the Alfwecase. include dissipation. The condition for weakly damped sound
Thus, very close to the threshold velocityy=c, the insta- waves isT.>T;, whereas under normal tokamak conditions,
bility has a very low frequency characteristic of the wall T.~T;, when the slow magnetosonic mode undergoes
mode, with a growth rate proportional to the wall resistivity. strong ion Landau damping.

The maximum growth occurs when the zero frequency wall  In view of this we introduce Landau damping into our
mode couples to the zero frequency slow sound wave. Fanodel. Since the dominant kinetic effects for the slow mag-
velocities just above the velocity at which maximum growth netosonic mode are due to the thermal motion parallel to the
occurs, the instability is associated with the slow soundequilibrium magnetic field, we take advantage of our uni-
wave, oscillating with the frequency of this mode. For theform slab model to incorporate the parallel kinetic effects in
sound wave case, the coupling of the slow sound wave witlan approximate manner. We ignore the effect of the bound-
the wall mode occurs much closer to the threshold than foaries on the electron and ion distribution functions. Instead,
the Alfven case. In order to carry out an analytic calculationwe use the dielectric tensor for a hot, uniform plasma to
of the behavior of the instability at maximum growth, the obtain a generalization of E¢6) for the perturbed magnetic
analysis would need to include the previously neglectedield. We also need to include kinetic effects in the perturbed
terms, 0¢2/c3). For this case we give just the numerical pressure, given by Eq21).

solution of the antisymmetric dispersion relation. The results The equation describing the perturbed magnetic field
are shown in Fig. @) (real part of w/kcs) and Fig. 4b) componentB,,, can be obtained from Maxwell's equations
(imaginary part ofw/kcs) as a function of the normalized and the hot plasma dielectric tensor for a uniform plasma.

flow velocity vq/cs. Following Shafrano¥ we obtain, for low frequenciesa(
<4),
V. THE EFFECT OF LANDAU DAMPING 2
o ) N ) . ) n” — €xx 0 0 ElX
Th_e reS|s'F|ve wall instability dlscuss_ed in Sec. IVB is 0 nz—eyy — ey, Ey | =0, (75
associated with the slow magnetosonic wave and occurs 5
when the flow speed exceeds the sound speed. Such flows 0 €yz Ny — €z, Eiz
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FIG. 4. Sound wave instability for the same parameters as Figa)3,
Rewlkes vs vg/cg, (b) Im w/ke vs v /cs.

wheren?=n? +n?,n? =c%k?/w? andn?=c?k? w?. As be-
fore, the shear Alfve wave, @ﬁ—eXX)ElXZO, decouples

from the fast and slow magnetosonic waves, described by -

(nz_ 6yy) Ely_ EyzElzZOv (76)
€yEry+ (N? — €,)E1,=0, (77)
For low frequenciesn’ <e,,, when Eq.(77) yields
€ El
= (78)
zz
Hence, from Eqs(76) and (78),
62
z
nf+nf- ey~ | Eqy=0. (79
zZ

The dielectric tensor elements for the low frequency cas
can be approximated bysee, for example, Stk and
Swansor?),

N

2
€Eyy— wpi
TIPS

olo
>N

: (80)

N
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2
pe k,

0wQe k

> k, iw

~ P 70—
€y~ 0Q; k [1+46Z(4)]

[1+eZ(Le)],
(81)

2
pre

2.2
VTe

2

€=1+ [1+4Z(8) ]+ [1+ZeZ(Le)],

(82

where {;=w/kvy;, “]" denotes either ions or electrons,
vrj=(2T;/m))2 andZ(¢;) is the plasma dispersion func-
tion.

For sound wave frequencieg.<1 and ¢;>1 if T,
>T;. WhenT;~T,, {i~1. Hence we retain the full plasma
dispersion function for the ions iwey,,€,, but neglect the
very weak electron Landau damping sinég<1. Under
these conditions, Eq$81) and(82) can be further approxi-
mated to

2,2
KV

i Kk,
Eyz:w_Qi?giZ(gi)v (83
.~ 20 1442(2)+ 2 (84)
Y44 k2V.2|_i I I Te .

Substituting Eqs(83) and(84) into Eg. (79), we obtain
(0’ =K1+ GZ(E)+ (TilTe)]

YL+ (Z() + (Tl + (VEi2) 2Z2(5))

=0. (85

Taking the inverse Fourier transform and using the Max-
well equation,B,,= — (k/w)E,,, we obtain the generaliza-
tion of Eq. (6),

2
L

d’Byy (@2 =K1+ GZ(L)+ (Ti/Te)]

O {1+ 4Z(5) + (TilTol+(vE12) PZ2(5))
=0. (86)
In the limit T2>T;, where ¢>1, 1+{Z(&)

—kvi/(20%), §iZ(£)~—1, and Eq/(86) reduces to Eq.
(6). Thus, Eq.(86) extends the previous model to include the
effect of ion Landau damping.

To complete this extension of the MHD model we must
also obtain the kinetic generalization of E@1) for the per-
turbed pressure. The pressure tensor is given by

p=m,—f (foj+ F1) (V=) (v=u)dv, (87)
whereu= [(fo;+ fy;)vdv.

We will simplify this calculation by assuming that the
plasma is stationary with a Maxwellian distribution. In this
case, [ fo;vdv=0, so thatu is a first order quantity in the
perturbed amplitude and does not contribute to the perturbed

$ressure within a linear analysis. We must therefore evaluate

Pho=m, f fyvadv. (89)

We use the perturbed distribution functidn; given by
Swansor?
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©

iq; * J (b)ei(mfnﬁb
fykv,o)=—-2 X -

j m=—o n=-=» (a)_anCj_kVZ)

nJ,(b)
X b for + Z(VLfOZ_VZfOL) E1x
+iJ)(b)| fo, + Z(VLfOZ_VZfOL) Eqy

En(l)c]‘
+‘]n(b) fOz_ ® (fOz
= (v /vy) for) Elz}! (89
where
o Jfo;
OLEWLJ, fOzE (9VZJ’ b=ekle/ch—,
eijllq]|1 k:(kL ,O,k),

Vy=V, C0S¢ andvy=v, sing.

The dominant contribution comes from the=0 terms
and is

X o0 o0 2
p‘lxxz—iq,—wJ Jvi(—5J5<b>)
—xJ0
(9fojlav,)

XJO(b)dVLW

VZElZ , (90)

Lashmore-Davies, Wesson, and Gimblett

Substituting Eq.(95) into Eq. (94) and usingk, By
=—i(dB,,/dx), we obtain

dBy,
KBB(w2—k3%c2) dx

which is in agreement with E¢21), obtained from the MHD
model.

Returning to the kinetic expression, E®1), and now
including the effect of hot ions, we write

i pow?c?

(96)

e
plxx_

iengEq, iengEq,
k k

where we have again neglected the weak electron Landau
damping. For this case,

[1+4Z(40], 97

Pixx=

ey, (log/o) (k1K) GZ(4)
€ (202IKVE) [1+4Z(5) +(TiTT 99
Proceeding as before, we obtain
i povd £z dBy,
Pixx=75 (99

2 kBp [1+4Z(&)+ (Ti/Te] dx

In the limit, ;>1, Eq.(99) reduces to Eq(21) obtained
from the MHD model. We are now in a position to derive the
generalization of the dispersion relation obtained in Sec. IV
to include the effect of ion Landau damping. The procedure
is identical to that used in Sec. IV except E¢6) and(99)
are used instead of Eq&) and (21). The resulting disper-
sion relation is formally the same as before, E2p), which
factors into the symmetric, E430), and antisymmetric, Eq.
(31), dispersion relations. The only difference is that the

where the integration ovep has been carried out. Assuming duantity F is no longer given by Eq(28), but instead by

|b|<1, and carrying out the remaining velocity—space inte-

grations,
Phom—ITOEE 1 4 7)), (01
Using Eq.(78) and the relation betwee,, andB,,,
Ei=— o 1 B (92
Substituting Eq(92) into Eq. (91),
p"lxx=mi%2—§§[1+§jzw,->]sn. (93)

Assuming cold ions for the moment and again usipg 1 to
neglect the weak electron Landau damping contribution,

—ieNge €y; @
pixx2 k ELZ_le, (94)

€,, K

vEEZA(E)

F_

= — +ca (100
2[1+4GZ(5)+ (TilTe)]

and 82 is now,

, (02— K21+ GZ(5) + (Ti/Te)]

= 2 oy 7292, 71
{eaAl1+GZ(&) + (TilTe) ]+ (VHiI2) 7278}

(101
instead of Eq(8). We note that the generalized equations for
Bix, EQ. (86), and the pressurpiyy, Eq. (99), have been
derived for a stationary plasma. In order to relate to Sec. 1V,
where the plasma is flowing, we have Doppler shifted the

frequencies occurring_ in Eq9100 and (101). Thus, ¢;
z(w—kvo)/vai and w has already been defined after Eq.

Let us now obtain solutions of the antisymmetric disper-
sion relation which is still given by Eq38), except thai3?
is now given by Eq.(101). For the slow magnetosonic

wheree is the proton charge. For the conditions just Stated(sound wave case the dispersion relation again reduces to

Egs.(81) and(82) give

6, 1 kkvio -
€ 2 (0?—k%)HQ,

Eqg. (65). We now consider this case under conditions where
T.>T,; so that the ion Landau damping is weak and we can
obtain a perturbation solution. First, we expand ELp1)

asymptotically assumin§> 1,
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, — K22l w2~ K2C2+i w2 E (To/ Te 4 ]

[ @2— K2R+ m 2t (T T e S 1+ @2cy — 1+imt2e 412

(102

B2 is now in a very similar form to the expression given in ~ Substituting Eqs(48) and(103) into Eq.(65), we obtain
Eq. (8) except that Eq(102) contains the effect of weak ion the perturbed dispersion relation,

Landau damping. In order to obtain a perturbation solution to

Eqg. (65 including the effect of ion Landau damping, we

again assume th&tc,<1 and use the approximation @, kg ow
given in Eq.(48). Thus, treating botfkc,, and the ion Lan- b [1+ A (Sw/kcg) +19] ~Fctan by 1+Ak_cs+|5
dau damping as small perturbations to the antisymmetric dis-
persion relation, the unperturbed equation is given by the
left-hand side of Eq(68) and the unperturbed frequencies of . —2k(d—g)
; dikcye 9
the fast and slow sound waves are as shown in (EZQ). =— F.tanb,, (106)

Substituting the perturbed slow sound wave solution, Eq. (kvo—kcsa)[1—e #Kd-9)]
(72), into Eq.(102), we obtain the perturbed value 6§ due
to the presence of the resistive wall perturbation and weak

damping, where only the unperturbed values @fand Bg have been

Sow substituted into the term proportional ke, since this is a
Bg=by| L+A —+id], (103  perturbation. Expanding the terms on the left-hand side of
S Eq. (106) for small Sw/kcg and smalls, we obtain
whereb,, are the roots of the unperturbed equation
Y a[1+ (c?/c2)]
A= A (104 kg Sw S
(1—a?) [a®+a?(cicy) —1] —|1-A——i8|—F.tanb,—F.b,| A— +i5|secb,
b, ke ke
and
- , _ dikcye 2KIT9IF tanb, (107
s=—at L e i (kvo—kcear)[1— e~ 4E-91]"
(1-a?) 2T [a?+a?(cilch) —1]
2
Te Col|— . .
x(———z)]gie g, (105 Making use of the unperturbed equationkg(b,)
2Ti o} —F.tanb,=0, Eq. (107 yields the solution fodw,
Sw 4ikcye 2K@-9F tanb, i6
ke, —4k(d—g) A (108
Cs  (kvo—kcsa)[1—e 9A[(kg/b,) +b,F.seéb,]
Substituting Egs(104) and (105) into Eq. (108 and the result;=— (T/2T;), we obtain the final form fobw,
; —2k(d—g) 215~2\ 1,222 s 12 3/2
@z 4ikcye 9F(cil2cy) kg®b; tanb, im (E) o (Tel2T) (109
KCs  Kk(vo—acy)[1—e -9 (k2g?+b2)?[ (kg/b,) +b,F.seéb,] 2 \2T;

Hence, asT./T; decreases, the ion Landau dampingdecreaseshe growth rate also decreases and passes through
term becomes stronger and for some critical value the growtlero whenv+;/cs=0.275. This gives the critical valuge-
rate will be zero. For still smaller values @t /T, the resis- ferred to aboveT./T;=26 for the parameters used. This is
tive wall instability associated with the slow sound wavein reasonable agreement with E409 which yields a criti-
becomes stable. cal valueT,./T;=30 for the same parameters. &s;/c; in-

This behavior is illustrated in Figs. 5—7 in which nu- creases further, the mode becomes more and more strongly
merical solutions of the exact dispersion relation, E2f) damped, as shown in Fig. 6.
with B2 given by Eq.(101), are displayed. In Fig. 5, the In the absence of dampingf. Fig. 4), the growth rate of
normalized growth rate is plotted as a functionvef/cs for  the slow sound wave takes on its maximum value whgis
Vvo/cs=1.5. Asvr;/cs increasegor equivalently, as./T; close tocs. Since Figs. 5 and 6 were obtained fop
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FIG. 7. Sound wave with ion Landau damping for same parameters as Fig.

FIG. 5. Sound wave instability with ion Landau damping for same param—3’ (@) Rewlke, VS Vo /Ce, (b) Im wike, VS v /c .

eters as Fig. 3(a) Rew/ke vs vri/cg, (b) Im w/ke vs vri/cg near to the
stability boundary.

vacuum region, has been shown to be subject to two insta-
=1.5c5, well away from the region of maximum growth, we pjjities both of which depend on the wall resistance and the
have also solved the dispersion relation for the real angiow. The first instability has a threshold velocityp=c,, a
imaginary parts of the normalized frequency of the slowcase which has recently been analyzed by We&sbhis
sound wave forvy;/cs=0.5 (T/T;=8) as a function of instability is associated with the slow, compressional Affve
Vo/Cs. The results are shown in Fig. 7 and it can be seen thaf,ave and a resistive wall mode.
the damping rate is now almost constant over the range of The second instability has a thresholth=c and is
Vo/cs from 1to 1.5, apart from a very small variation around associated with the slow sound wave and a resistive wall
Vo=1.2;. mode and clearly requires the effect of plasma compressibil-
ity. In both cases, the unstable mode changes its character
from a zero frequency resistive wall mode close to the
VI. SUMMARY AND CONCLUSIONS threshold to an oscillatory mode when the flow speed is
A sharp boundary, uniform plasma with a uniform flow Somewhat above the threshold value. The maximum growth
along the magnetic field, separated from a resistive wall by &ates occur when the zero frequency wall mode couples to
the zero frequency slow wavéAlfven or soung. Under
these circumstances the behavior is more characteristic of a
reactive or ideal instability than of a dissipative or resistive
" @ one. The oscillatory instabilities, slow Alfweor slow sound,
* are analogous to the resistive wall amplifier proposed by
Birdsall et al®
o In the final part of the above analysis the slow sound
’ instability has been generalized to include the effect of ion
ol Landau damping. This was because the slow magnetosonic
S wave is normally strongly damped by ion Landau damping
whenT;~T,. It was found that since the growth rate of the
T0e / ks resistive wall/slow magnetoacoustic instability is rather
o small it is stabilized by weak ion Landau damping. For
® . . .
strong ion Landau damping, the damping rate of the slow
sound wave is almost independent of the flow speed, above

Re w/keg

02

02 or below the sound speed. The inclusion of kinetic ion damp-
1 ing suggests a possible interpretation of the stabilizing effect
° of plasma flow.
ool . ‘ . . ' . . e In the absence of flow, the resistive wall instability oc-
8 e o5 e @ a e 10 WS curs at zero frequency and hence would be insensitive to ion
FIG. 6. Sound wave with ion Landau damping for same parameters as Fig-andau damping. It is now clear that the presence of flow
3, (@) Rewlke, Vs vi/cg, (b) Im w/kes Vs vri/Cs. could introduce a damping mechanism to the wall mode by
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