144 research outputs found

    The regulatory mechanisms of NG2/CSPG4 expression

    Get PDF
    Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types

    Macrophages promote network formation and maturation of transplanted adipose tissue-derived microvascular fragments

    Get PDF
    Adipose tissue-derived microvascular fragments rapidly reassemble into microvascular networks within implanted scaffolds. Herein, we analyzed the contribution of macrophages to this process. C57BL/6 mice received clodronate (clo)-containing liposomes for macrophage depletion, whereas animals treated with phosphate-buffered-saline-containing liposomes served as controls. Microvascular fragments were isolated from clo- and phosphate-buffered-saline-treated donor mice and seeded onto collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of clo- and phosphate-buffered-saline-treated recipient mice. The implants' vascularization and incorporation were analyzed by stereomicroscopy, intravital fluorescence microscopy, histology, and immunohistochemistry. Compared to controls, matrices within clo-treated animals exhibited a significantly reduced functional microvessel density. Moreover, they contained a lower fraction of microvessels with an α-smooth muscle actin (SMA)+ cell layer, indicating impaired vessel maturation. This was associated with a deteriorated implant incorporation. These findings demonstrate that macrophages not only promote the reassembly of microvascular fragments into microvascular networks, but also improve their maturation during this process

    Bone Healing Gone Wrong : Pathological Fracture Healing and Non-Unions—Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors

    Get PDF
    Bone healing is a multifarious process involving mesenchymal stem cells, osteoprogenitor cells, macrophages, osteoblasts and -clasts, and chondrocytes to restore the osseous tissue. Particularly in long bones including the tibia, clavicle, humerus and femur, this process fails in 2–10% of all fractures, with devastating effects for the patient and the healthcare system. Underlying reasons for this failure are manifold, from lack of biomechanical stability to impaired biological host conditions and wound-immanent intricacies. In this review, we describe the cellular components involved in impaired bone healing and how they interfere with the delicately orchestrated processes of bone repair and formation. We subsequently outline and weigh the risk factors for the development of non-unions that have been established in the literature. Therapeutic prospects are illustrated and put into clinical perspective, before the applicability of biomarkers is finally discussed

    Erythropoietin exposure of isolated pancreatic islets accelerates their revascularization after transplantation

    Get PDF
    Aims The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. Methods Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. Results We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. Conclusion These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation

    Microcirculatory alterations in ischemia–reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition

    Get PDF
    Experimental studies in ischemia–reperfusion and sepsis indicate that activated protein C (APC) has direct anti-inflammatory effects at a cellular level. In vivo, however, the mechanisms of action have not been characterized thus far. Intravital multifluorescence microscopy represents an elegant way of studying the effect of APC on endotoxin-induced leukocyte–endothelial-cell interaction and nutritive capillary perfusion failure. These studies have clarified that APC effectively reduces leukocyte rolling and leukocyte firm adhesion in systemic endotoxemia. Protection from leukocytic inflammation is probably mediated by a modulation of adhesion molecule expression on the surface of leukocytes and endothelial cells. Of interest, the action of APC and antithrombin in endotoxin-induced leukocyte–endothelial-cell interaction differs in that APC inhibits both rolling and subsequent firm adhesion, whereas antithrombin exclusively reduces the firm adhesion step. The biological significance of this differential regulation of inflammation remains unclear, since both proteins are capable of reducing sepsis-induced capillary perfusion failure. To elucidate whether the action of APC and antithrombin is mediated by inhibition of thrombin, the specific thrombin inhibitor hirudin has been examined in a sepsis microcirculation model. Strikingly, hirudin was not capable of protecting from sepsis-induced microcirculatory dysfunction, but induced a further increase of leukocyte–endothelial-cell interactions and aggravated capillary perfusion failure when compared with nontreated controls. Thus, the action of APC on the microcirculatory level in systemic endotoxemia is unlikely to be caused by a thrombin inhibition-associated anticoagulatory action

    Local Application of Mineral-Coated Microparticles Loaded With VEGF and BMP-2 Induces the Healing of Murine Atrophic Non-Unions

    Get PDF
    Deficient angiogenesis and disturbed osteogenesis are key factors for the development of nonunions. Mineral-coated microparticles (MCM) represent a sophisticated carrier system for the delivery of vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)-2. In this study, we investigated whether a combination of VEGF- and BMP2-loaded MCM (MCM + VB) with a ratio of 1:2 improves bone repair in non-unions. For this purpose, we applied MCM + VB or unloaded MCM in a murine non-union model and studied the process of bone healing by means of radiological, biomechanical, histomorphometric, immunohistochemical and Western blot techniques after 14 and 70 days. MCM-free non-unions served as controls. Bone defects treated with MCM + VB exhibited osseous bridging, an improved biomechanical stiffness, an increased bone volume within the callus including ongoing mineralization, increased vascularization, and a histologically larger total periosteal callus area consisting predominantly of osseous tissue when compared to defects of the other groups. Western blot analyses on day 14 revealed a higher expression of osteoprotegerin (OPG) and vice versa reduced expression of receptor activator of NF-κB ligand (RANKL) in bone defects treated with MCM + VB. On day 70, these defects exhibited an increased expression of erythropoietin (EPO), EPOreceptor and BMP-4. These findings indicate that the use of MCM for spatiotemporal controlled delivery of VEGF and BMP-2 shows great potential to improve bone healing in atrophic non-unions by promoting angiogenesis and osteogenesis as well as reducing early osteoclast activity

    Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice

    Get PDF
    Aims The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clinical outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the revascularization of transplanted islets. Methods Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry. Results The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet. Conclusions These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular function and may facilitate successful transplantation

    Vascularization of Microvascular Fragment Isolates from Visceral and Subcutaneous Adipose Tissue of Mice

    Get PDF
    Background: Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies in rodents exclusively use epididymal adipose tissue as a visceral fat source for MVF isolation. However, in future clinical practice, MVF may be rather isolated from liposuctioned subcutaneous fat tissue of patients. Therefore, we herein compared the vascularization characteristics of MVF isolates from visceral and subcutaneous fat tissue of murine origin. Methods: MVF isolates were generated from visceral and subcutaneous fat tissue of donor mice using two different enzymatic procedures. For in vivo analyses, the MVF isolates were seeded onto collagen-glycosaminoglycan scaffolds and implanted into full-thickness skin defects within dorsal skinfold chambers of recipient mice. Results: By means of the two isolation procedures, we isolated a higher number of MVF from visceral fat tissue when compared to subcutaneous fat tissue, while their length distribution, viability and cellular composition were comparable in both groups. Intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a significantly reduced vascularization of implanted scaffolds seeded with subcutaneous MVF isolates when compared to implants seeded with visceral MVF isolates. Light and scanning electron microscopy showed that this was due to high amounts of undigested connective tissue within the subcutaneous MVF isolates, which clogged the scaffold pores and prevented the interconnection of individual MVF into new microvascular networks. Conclusion: These findings indicate the need for improved protocols to generate connective tissue-free MVF isolates from subcutaneous fat tissue for future translational studies

    Angiogenesis in tissue engineering : Breathing life into constructed tissue substitutes

    Get PDF
    Long-term function of three-dimensional (3D) tissue constructs depends on adequate vascularization after implantation. Accordingly, research in tissue engineering has focused on the analysis of angiogenesis. For this purpose, 2 sophisticated in vivo models (the chorioallantoic membrane and the dorsal skinfold chamber) have recently been introduced in tissue engineering research, allowing a more detailed analysis of angiogenic dysfunction and engraftment failure. To achieve vascularization of tissue constructs, several approaches are currently under investigation. These include the modification of biomaterial properties of scaffolds and the stimulation of blood vessel development and maturation by different growth factors using slow-release devices through pre-encapsulated microspheres. Moreover, new microvascular networks in tissue substitutes can be engineered by using endothelial cells and stem cells or by creating arteriovenous shunt loops. Nonetheless, the currently used techniques are not sufficient to induce the rapid vascularization necessary for an adequate cellular oxygen supply. Thus, future directions of research should focus on the creation of microvascular networks within 3D tissue constructs in vitro before implantation or by co-stimulation of angiogenesis and parenchymal cell proliferation to engineer the vascularized tissue substitute in situ

    Parathyroid hormone stimulates bone regeneration in an atrophic non-union model in aged mice

    Get PDF
    Background Non-union formation still represents a major burden in trauma and orthopedic surgery. Moreover, aged patients are at an increased risk for bone healing failure. Parathyroid hormone (PTH) has been shown to accelerate fracture healing in young adult animals. However, there is no information whether PTH also stimulates bone regeneration in atrophic non-unions in the aged. Therefore, the aim of the present study was to analyze the efect of PTH on bone regeneration in an atrophic non-union model in aged CD-1 mice. Methods After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fxation. The animals were treated daily with either 200 mg/kg body weight PTH 1–34 (n=17) or saline (control; n=17) subcutaneously. Bone regeneration was analyzed by means of X-ray, biomechanics, micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses. Results In PTH-treated animals bone formation was markedly improved when compared to controls. This was associated with an increased bending stifness as well as a higher number of tartrate-resistant acid phosphatase (TRAP)- positive osteoclasts and CD31-positive microvessels within the callus tissue. Furthermore, PTH-treated aged animals showed a decreased infammatory response, characterized by a lower number of MPO-positive granulocytes and CD68-positive macrophages within the bone defects when compared to controls. Additional Western blot analyses demonstrated a signifcantly higher expression of cyclooxygenase (COX)-2 and phosphoinositide 3-kinase (PI3K) in PTH-treated mice. Conclusion Taken together, these fndings indicate that PTH is an efective pharmacological compound for the treatment of non-union formation in aged animals
    corecore