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Abstract
Aims  The minimal-invasive transplantation of pancreatic islets is a promising approach to treat diabetes mellitus type 1. 
However, islet transplantation is still hampered by the insufficient process of graft revascularization, leading to a poor clini-
cal outcome. Accordingly, the identification of novel compounds, which accelerate and improve the revascularization of 
transplanted islets, is of great clinical interest. Previous studies have shown that darbepoetin (DPO)-α, a long lasting analogue 
of erythropoietin, is capable of promoting angiogenesis. Hence, we investigated in this study whether DPO improves the 
revascularization of transplanted islets.
Methods  Islets were isolated from green fluorescent protein-positive FVB/N donor mice and transplanted into dorsal skinfold 
chambers of FVB/N wild-type animals, which were treated with DPO low dose (2.5 µg/kg), DPO high dose (10 µg/kg) or 
vehicle (control). The revascularization was assessed by repetitive intravital fluorescence microscopy over an observation 
period of 14 days. Subsequently, the cellular composition of the grafts was analyzed by immunohistochemistry.
Results  The present study shows that neither low- nor high-dose DPO treatment accelerates the revascularization of free 
pancreatic islet grafts. However, high-dose DPO treatment increased the blood volume flow of the transplanted islet.
Conclusions  These findings demonstrated that DPO treatment does not affect the revascularization of transplanted islets. 
However, the glycoprotein increases the blood volume flow of the grafts, which results in an improved microvascular func-
tion and may facilitate successful transplantation.
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Introduction

Islet transplantation is a promising treatment strategy for the 
treatment of diabetes mellitus type 1, especially for patients 
suffering from glycemic instability and severe hypoglycemic 
episodes [1]. However, the reduced engraftment, which is 
caused by the delay of revascularization of the islets dur-
ing the first few days after transplantation, is still a major 

problem of this therapeutic approach [2]. Therefore, multiple 
donor organs are required for one recipient to achieve a long-
term insulin independency [3].

We have recently shown that pretreatment of mice with 
EPO significantly accelerates the revascularization of trans-
planted islets. However, in clinical practice there is little 
time between receiving the appropriate donor pancreas and 
the transplantation itself. Therefore, an adequate pretreat-
ment of patients with EPO might not be possible under 
clinical conditions. EPO treatment starting on the day of 
transplantation, however, showed only little effect in improv-
ing revascularization of freely transplanted islets [4]. This 
reduced effect might be due to the fact that the generation of 
a suitable plasma level of EPO requires several days.

A promising approach to overcome this problem may be 
the treatment of mice with darbepoetin (DPO)-α starting 
from the day of transplantation. This glycoprotein differs in 
its amino acid sequence and its carbohydrate content when 

Managed by Massimo Federici.

 *	 Emmanuel Ampofo 
	 emmanuel.ampofo@uks.eu

1	 Institute for Clinical and Experimental Surgery, Saarland 
University, 66421 Homburg, Saar, Germany

2	 Department for General, Visceral, Vascular and Pediatric 
Surgery, Saarland University, 66421 Homburg, Saar, 
Germany

http://orcid.org/0000-0002-1886-5657
http://crossmark.crossref.org/dialog/?doi=10.1007/s00592-020-01512-w&domain=pdf


1010	 Acta Diabetologica (2020) 57:1009–1018

1 3

compared with EPO [5]. Of note, the half-life of DPO is 
2–3 times longer and the clearance approximately 4 times 
slower than those of EPO, which results in a higher bioavail-
ability [6, 7]. Besides its hematopoietic function, DPO exerts 
anti-apoptotic, anti-inflammatory and cytoprotective actions 
[8, 9]. Moreover, DPO is capable of triggering angiogenic 
processes in vitro and in vivo [10, 11].

Based on these findings, we hypothesized that DPO 
treatment, starting from the day of transplantation, could be 
superior to EPO to ameliorate the revascularization process 
of transplanted islets. To prove this, islets were isolated from 
green fluorescent protein (GFP)-positive FVB/N donor mice 
and transplanted into dorsal skinfold chambers of recipi-
ent animals, which were treated with DPO low-dose, DPO 
high-dose or vehicle. The revascularization of the grafts 
was analyzed by means of repetitive intravital fluorescence 
microscopy and immunohistochemistry.

Materials and methods

Reagents and antibodies

Collagenase NB 4G was purchased from SERVA Elektro-
phoresis GmbH (Heidelberg, Germany). Fluorescein isothio-
cyanate (FITC)-dextran 150,000, rhodamine 6G and Hoechst 
33,342 were purchased from Sigma-Aldrich (Taufkirchen, 
Germany), ketamine (Ursotamin®) was purchased from 
Serumwerke Bernburg (Bernburg, Germany) and xylazine 
(Rompun®) was purchased from Bayer (Leverkusen, Ger-
many). HepatoQuick® and DPO-α (Aranesp®) were pur-
chased from Amgen (München, Germany). The antibody 
anti-CD31 (DIA310) was received from Dianova (Germany), 
the antibodies anti-insulin and the anti-myeloperoxidase 
(MPO) antibody (ab9535) from Abcam (Cambridge, UK), 
the antibody anti-GFP from Rockland Immunochemical Inc. 
(Limerick, USA) and anti‐Casp‐3 antibody from New Eng-
land Biolabs (Frankfurt am Main, Germany).

Animals

FVB/N-TgN (Tie2/GFP) 287 Sato mice (Institute for Clini-
cal and Experimental Surgery, Homburg/Saar, Germany) at 
the age of 12–24 weeks and a body weight of 25–30 g were 
used as donors for islet isolation. FVB/N mice at the age of 
8–10 weeks and a body weight of 22–27 g served as recipi-
ents for islet transplantation. The mice were housed one per 
cage under a 12/12 h day/night cycle and had free access to 
water and standard pellet chow (Altromin, Lage, Germany).

All experiments were performed according to the German 
legislation on protection of animals and the National Insti-
tutes of Health (NIH) Guide for the Care and Use of Labo-
ratory Animals (Institute of Laboratory Animal Resources, 

National Research Council, Washington DC, USA). The 
local governmental animal protection committee approved 
them (permission number: 58/2015).

Isolation of pancreatic islets

Mice were anesthetized by intraperitoneal (i.p.) injection of 
ketamine (75 mg/kg body weight) and xylazine (25 mg/kg 
body weight). After a midline laparotomy, the pancreatic 
duct was identified and injected with 1 mg/mL collagenase 
solution containing 25 µL/mL neutral red. Subsequently, 
pancreatic islets were isolated as described previously in 
detail [12].

Preparation of the dorsal skinfold chamber

We used the dorsal skinfold chamber model (Fig. 1a) to 
analyze the revascularization of transplanted islets in vivo. 
The chamber implantation was performed as described pre-
viously in detail [13]. Briefly, the mice were anesthetized 
and two symmetrical titanium frames were implanted on 
the extended dorsal skinfold of the animals. Skin, subcutis 
and retractor muscle from the front side were completely 
removed in a circular area of 15 mm. The remaining layers, 
consisting of muscle, subcutis and cutis of the back side, 
were covered by a removable cover glass, providing direct 
microscopic access to the microcirculation of the chamber. 
After the procedure, the animals were allowed to recover 
for 72 h.

Transplantation of pancreatic islets

For the transplantation of pancreatic islets, the cover glass 
was removed, the chamber was washed twice with saline, 
and 6–8 freshly isolated neutral red-stained islets were trans-
planted onto the striated muscle tissue. Then, the chamber 
was sealed with a new cover glass (Fig. 1b).

Intravital fluorescence microscopy

Anesthetized mice were fixed on a plexiglas stage and 
received a retrobulbary, intravenous injection of 0.05 mL 
5% FITC-dextran 150.000 for contrast enhancement by 
staining of blood plasma. Moreover, 0.05 mL 2% rho-
damine 6G, which accumulates in endocrine but not in 
striated muscle tissue by extravasation from fenestrated 
endothelium, was intravenously given for the visualization 
of the rhodamine uptake and, by this, the determination 
of the endocrine revascularization, i.e. the ratio between 
the area of rhodamine uptake and the initial islet size 
[14]. Then, the dorsal skinfold chamber was positioned 
under a Zeiss microscope (Zeiss, Oberkochen, Germany) 
with a 100 W mercury lamp attached to a blue (excitation 
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wavelength: 450–490 nm/emission wavelength: > 515 nm) 
and a green (530–560 nm/ > 585 nm) filter block. The 
microscopic images were recorded by a charge-coupled 
device video camera (FK6990; Pieper, Schwerte, Ger-
many) and transferred to a monitor (Trinitron; Sony, 
Tokyo, Japan) and DVD system (DVD-HR775; Samsung, 
Eschborn, Germany) for off-line evaluation.

Quantitative analysis of the microscopic images was 
performed by the computer-assisted image analysis system 
CapImage (Zeintl, Heidelberg, Germany) and included the 
determination of the grafts’ initial size (mm2) (Fig. 1c, 
d), relative size of the vasculare network, i.e. the ratio 
between the revascularized area and the initial islet size, 
functional capillary density (cm/cm2) and endocrine revas-
cularization as previously described [15, 16]. We further 
measured microhemodynamic parameters, i.e. diameter 
(µm), centerline red blood cell (RBC) velocity (µm/s) 
and volumetric blood flow (pL/s), of individual microves-
sels within the grafts [15, 16]. Moreover, we determined 
the take rate (%) on day 14, i.e. the fraction of engrafted 
islets in relation to the number of transplanted islets. The 
successful engraftment was assessed by the presence of 
a newly formed islet-associated blood vessel network on 
day 14.

Experimental protocol

Seven FVB/N-TgN (Tie2/GFP) 287 Sato mice were used 
as donors for pancreatic islet transplantation. A total num-
ber of 27 FVB/N mice were equipped with dorsal skinfold 
chambers. The mice were randomly assigned to 3 experi-
mental groups of 9 animals each. DPO low dose (2.5 µg/kg 
body weight, i.p.), DPO high dose (10 µg/kg body weight, 
i.p.) and vehicle (ctrl; 100 µL saline, i.p.) was adminis-
trated every 3 days, starting from the day of transplanta-
tion (day 0). Repetitive intravital fluorescence microscopy 
was performed on days 0, 3, 6, 10 and 14 after transplanta-
tion. At the end of the experiments, blood samples were 
drawn from the vena cava and the hematocrit levels, hemo-
globin, the number of RBC, neutrophilic granulocytes and 
monocytes were determined by a hematology analyzer 
(Abaxis VetScan HM5; scil animal care company GmbH, 
Viernheim, Germany). Subsequently, the islet-containing 
chamber tissue was excised for further histological and 
immunohistochemical analyses (Fig. 1e).
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Fig. 1   Experimental setting of islet transplantation. a FVB/N mouse 
equipped with a dorsal skinfold chamber. Scale bar: 10  mm. b 
Observation window of a dorsal skinfold chamber containing eight 
transplanted islets. Scale bar: 100  µm. c, d Intravital fluorescence 
microscopic images of a neutral red-stained islet within the dorsal 
skinfold chamber of a vehicle-treated animal on day 0. The plasma 
marker FITC-dextran was used for the visualization of blood-per-

fused microvessels surrounding the islet (marked by dotted line) in 
blue light epi-illumination (c). The initial islet size was determined by 
neutral red-fluorescence in green light epi-illumination (d). Scale bar: 
50  μm. e Schematic illustration of the experimental setting of DPO 
administration and islet transplantation. Recipient animals received 
DPO low dose, DPO high dose or vehicle every 3 days starting from 
the day of transplantation (day 0)
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Histology and immunohistochemistry

For the preparation of histological sections, specimens of 
islet-containing dorsal skinfold chamber preparations were 
fixed for 24 h in 4% formalin. In addition, freshly isolated 
islets were incubated for 45 min at 37 °C in 100 µL Hepato-
Quick®, 50 µL human citrate plasma and 10 µL 10% CaCl2 
solution. The resulting clot was also fixed for 24 h in 4% 
formalin. The formalin-fixed specimens were then embedded 
in paraffin and 3-μm-thick sections were cut.

The sections were stained with hematoxylin and eosin 
(HE) according to standard procedures. For the immuno-
histochemical analysis, the sections were stained with an 
anti-insulin, anti-GFP, anti-CD31 and anti-MPO antibody, 
which were detected by their corresponding secondary anti-
bodies. Cell nuclei were stained with Hoechst 33,342. The 
sections were analyzed by means of fluorescence micros-
copy (BX60F; Olympus, Hamburg, Germany). The numbers 
of insulin-positive, CD31- and GFP-positive islet cells were 
counted using ImageJ software (NIH, Bethesda, MD, USA) 
and given in % of all islet cells.

Statistical analysis

After testing the data for normal distribution and equal vari-
ance, differences between the groups were assessed by the 
one-way analysis of variance (One-way ANOVA). To test 
for time effects within individual groups, ANOVA on ranks 
for repeated measures was applied. This was followed by 
the Student–Newman–Keuls post-hoc test (SigmaPlot 13.0; 
Jandel Corporation, San Rafael, CA, USA). All values are 
expressed as mean ± SEM. Statistical significance was 
accepted for P < 0.05.

Results

Effect of DPO treatment on the revascularization 
of the islet grafts

The size of the transplanted islets varied between 0.11 and 
0.14 mm2, but did not differ significantly between the three 
experimental groups. First, we analyzed the transplanted 
islet functional capillary density of vehicle-, DPO low-dose- 
and DPO high-dose-treated animals over the 14-day period. 
We found a significant increase of the functional capillary 
density from day 0 to day 6 and to day 10, however, with-
out a significant difference between the three study groups 
(Fig. 2a, b). The relative size of the vascular network was 
also not affected by the treatment with the glycoprotein when 
compared to animals receiving only vehicle (Fig. 2a, c).

Next, we measured the endocrine revascularization of 
the islets, which can be assessed by the accumulation of 
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Fig. 2   Effect of DPO treatment on the revascularization of trans-
planted islets. a Representative intravital microscopic images of islets 
(marked by dotted lines) on days 6, 10 and 14 after transplantation 
into the dorsal skinfold chamber of FVB/N mice, which were treated 
with vehicle (ctrl), DPO low dose or DPO high dose. The plasma 
marker FITC-dextran was used for the visualization of microvessels 
in blue light epi-illumination. Scale bar: 50 µm. b, c Functional capil-
lary density (cm/cm2) (b) and the relative size of vascular network (c) 
of islets on days 0, 3, 6, 10 and 14 after transplantation into the dor-
sal skinfold chamber of FVB/N mice, which were treated with vehi-
cle (ctrl, white bars, n = 9), DPO low dose (gray bars, n = 9) or DPO 
high dose (black bars, n = 9). Mean ± SEM. aP < 0.05 versus day 0 in 
each individual group; bP < 0.05 versus days 0 and 3 in each individ-
ual group; cP < 0.05 versus days 0, 3 and 6 in each individual group; 
dP < 0.05 versus days 0, 3, 6 and 10 in each individual group
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extravasated rhodamine 6G (Fig. 3a). DPO low-dose- and 
high-dose-treated animals showed a slightly, but not sig-
nificantly increased endocrine tissue perfusion over the 
end of the observation period when compared to controls 
(Fig. 3a, b). Furthermore the take rate of transplanted 
islets on day 14 was higher in DPO low-dose (93 ± 5%)- 
and DPO high-dose (88 ± 6%)-treated animals when com-
pared to that of vehicle-treated controls (79 ± 7%). How-
ever, the statistical analysis could not confirm a significant 
difference.

Effect of DPO on the microhemodynamic 
parameters of the islet grafts

The diameters, centerline RBC velocity and, accordingly, 
the volume flow of newly formed microvessels within the 
transplanted islets of the three groups were determined. The 
diameter of the microvessels was not affected by DPO low-
dose treatment; however, DPO high-dose treatment enlarged 
the vessel diameter on day 14 (Fig. 4a–d). The centerline 
RBC velocity did not differ between the experimental groups 
throughout the entire observation period (Fig. 4e). This 
resulted in a significantly increased blood volume flow in 
DPO high-dose-treated animals when compared to vehicle-
treated and low-dose-treated mice (Fig. 4f).

Histological and immunohistochemical analysis 
of the islet grafts

On day 14 the HE-stainings revealed an intact morphology 
of transplanted islets in all three study groups (Fig. 5a). It has 
been shown that DPO reduces inflammation-induced tissue 
injury [9, 17]. Therefore, we analyzed the number of MPO-
positive neutrophilic granulocytes and monocytes infiltrating 
the grafts. We did not detect any MPO-positive cells within 
transplanted islets of the different groups (Fig. 5b). Moreo-
ver, we did not measure any cleaved caspase-3-positive cell 
within the grafts indicating a lack of apoptotic cell death 
(data not shown).

We next assessed the number of blood vessels within the 
grafts by means of insulin and CD31 co-staining (Fig. 5c–e). 
DPO treatment affects neither the number of insulin-posi-
tive cells nor the formation of new blood vessels within the 
grafts. In addition, we analyzed the effect of DPO on fate of 
intra-islet endothelial cells by co-staining of GFP and CD31 
(Fig. 5f). The analyses revealed that DPO did not alter the 
percentage of GFP-positive donor endothelial cells.

Effect of DPO on the hematopoiesis of the recipient 
animals

Blood samples of the recipient animals were collected on 
day 14 after transplantation. The analysis revealed that the 
glycoprotein does not affect the number of circulating neu-
trophilic granulocytes and monocytes when compared to 
vehicle-treated controls (Table 1). DPO low-dose treatment 
had no significant effect on the blood values of recipient ani-
mals when compared to controls. DPO high-dose treatment, 
however, triggered hematopoiesis and caused a significant 
increase in the systemic hematocrit, hemoglobin and RBC 
count when compared to DPO low-dose-treated animals and 
vehicle-treated controls (Table 1).
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Fig. 3   Effect of DPO treatment on the endocrine tissue perfusion of 
transplanted islets. a Representative intravital microscopic images of 
islets on days 6, 10 and 14 after transplantation into the dorsal skin-
fold chamber of FVB/N mice, which were treated with vehicle (ctrl), 
DPO low dose or DPO high dose. Rhodamine 6G was used to visu-
alize the endocrine tissue perfusion (revascularization) in green light 
epi-illumination Scale bar: 50 µm. b Endocrine revascularization of 
islets on days 0, 3, 6, 10 and 14 after transplantation into the dorsal 
skinfold chamber of FVB/N mice, which were treated with vehicle 
(ctrl, white bars, n = 9), DPO low dose (gray bars, n = 9) and DPO 
high dose (black bars, n = 9). Mean ± SEM. bP < 0.05 versus days 0 
and 3 in each individual group; cP < 0.05 versus days 0, 3 and 6 in 
each individual group
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Discussion

The aim of the present study was to analyze the effects of 
the long lasting EPO analogue DPO on the revascularization 
of transplanted pancreatic islets. Our results show that DPO 
is not capable of accelerating the process of revasculariza-
tion. However, DPO high-dose treatment increases the blood 
volume flow in transplanted islets. This beneficial effect was 
associated with significantly elevated systemic hematocrit 
levels in the recipient animals.

Following the enzymatic isolation procedure, pancreatic 
islets are completely avascular [18]. After the transplanta-
tion of freshly isolated islets, it requires 10–14 days until 
the new microvascular network of the grafts is fully devel-
oped [19]. This, in turn, leads to an initial shortage of oxy-
gen and nutrients in the islet core, especially in larger islets 

with diameters larger than 200 µm [20]. Insufficient graft 
revascularization during the first days after transplantation 
is thought to be the major reason for the poor results in clini-
cal islet transplantation and the necessity for multiple donor 
pancreata to achieve normoglycemia [21].

Previous studies focused on the cultivation of islets in 
the presence of pro-angiogenic factors or glucagon-like pep-
tide (GLP)-1 analoga, such as exendin-4 or liraglutide to 
improve the revascularization process [22–24]. Considering 
the fact that the culture of isolated islets impairs the function 
and survival of the grafts [25, 26], it remains questionable 
if this strategy is superior to freshly transplanted islets. A 
different approach, proposed by Johansson et al. [27], uses 
tissue engineering to improve the revascularization of pan-
creatic islets. These authors, among others, could reveal that 
the co-cultivation and co-transplantation of mesenchymal 

Fig. 4   Effect of DPO on 
the microhemodynamics of 
transplanted islets. a–c Rep-
resentative intravital micro-
scopic images of islets on day 
14 after transplantation into 
the dorsal skinfold chamber 
of FVB/N mice, which were 
treated with vehicle (ctrl, a), 
DPD low dose (b) or DPO high 
dose (c). The plasma marker 
FITC-dextran was used for the 
visualization of microvessels 
in blue light epi-illumination. 
Arrows = draining venules 
within the microvascular 
network. Scale bar: 50 µm. d–f 
Diameter (µm) (d), centerline 
RBC velocity (µm/s) (e) and 
volume flow (pL/s) (f) of islets 
on days 3, 6, 10 and 14 after 
transplantation into the dorsal 
skinfold chamber of FVB/N 
mice, which were treated with 
vehicle (ctrl, white bars, n = 9), 
DPO low (gray bars, n = 9) and 
DPO high (black bars, n = 9). 
Mean ± SEM. aP < 0.05 versus 
day 0 in each individual group; 
bP < 0.05 versus days 0 and 3 in 
each individual group; cP < 0.05 
versus days 0, 3 and 6 in each 
individual group; *P < 0.05 
versus ctrl; #P < 0.05 versus 
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stem cells and endothelial cells with islets induce angio-
genesis and therefore benefit the revascularization process 
[28, 29]. However, the cultivation of multiple cell lines is 
hard to achieve in a clinical setting due to financial, organi-
zational and regulatory obstacles, and, in particular, due to 
the risk of the contamination of the islet grafts during the 

incorporation procedure. Therefore, the treatment of the 
recipients with pharmacological drugs, which specifically 
trigger angiogenic pathways, would be a more practical and 
viable approach.

We have recently shown that EPO is a promising com-
pound to accelerate the revascularization process of 

Fig. 5   Immunohistochemical 
analysis of transplanted islets. 
a HE staining of transplanted 
islets on day 14 after transplan-
tation into the dorsal skinfold 
chamber, which were treated 
with vehicle (ctrl), DPO low 
dose or DPO high dose. (Scale 
bar: 50 µm). b MPO-staining 
of transplanted islets on day 
14 after transplantation into 
the dorsal skinfold chamber, 
which were treated with vehicle 
(ctrl), DPO low dose or DPO 
high dose. (Scale bar: 50 µm). c 
Immunofluorescence staining of 
insulin/CD31/merge and CD31/
GFP/merge within transplanted 
islets on day 14 after transplan-
tation into the dorsal skinfold 
chamber of FVB/N mice, which 
were treated with vehicle (ctrl), 
DPO low dose or DPO high 
dose. (Scale bar: 50 µm). d–f 
Quantification of insulin- (b), 
CD31- (c) (in % of all islet 
cells) and GFP- (d) positive 
cells (in % of all CD31-positive 
cells) within transplanted islets 
on day 14 after transplantation 
into the dorsal skinfold chamber 
of FVB/N mice, which were 
treated with vehicle (ctrl), DPO 
low dose or DPO high dose 
(n = 9; per group). Mean ± SEM
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transplanted pancreatic islets. However, the pro-angiogenic 
effect was predominant, when EPO was administrated prior 
islet transplantation [30]. This pretreatment might not be 
possible to transfer in a clinical setting, as the transplantation 
process is a swift procedure with little time between receiv-
ing the donor organ and the transplantation itself.

The glycoprotein DPO, a long lasting analogue of EPO, 
which is commonly used in the treatment of anemia [31], 
exceeds its hematopoetic functions and is also capable of 
promoting angiogenesis [32]. The prolonged half-life of 
DPO results in a greater biological activity when compared 
to EPO [5]. Hence, we speculated that DPO treatment start-
ing at the day of transplantation, could enhance the vascu-
larization of the islet grafts. We chose 2.5 µg/kg DPO as 
low dose, which corresponds to the peptide mass of 500 UI/
kg EPO [6] used in our previous work and 10 µg/kg DPO 
as high dose to fully exploit the pro-angiogenic effect of 
the glycoprotein. Our results showed an increasing graft 
revascularization from the day of transplantation until day 
10 after transplantation in DPO-treated and vehicle-treated 
animals. However, between day 10 and 14 we could not 
detect any further vascularization. These findings could be 
explained by the fact that during the first days of transplan-
tation, proangiogenic factors produced by transplanted islet 
cells such as vascular endothelial growth factor (VEGF)-A 
stimulate and recruit endothelial cells to form new blood 
vessels [33, 34]. After establishment of a preliminary vessel 
network at day 10, vascular remodeling is necessary to form 
mature, fully functional blood vessels [35]. The process of 
remodeling it typically associated with some decrease in 
vessel density [36]. This, in turn, could be responsible for 
the slightly reduced endocrine revascularization from day 10 
to day 14, since only islet cells connected to perfused blood 
vessels can be stained with rhodamine 6G.

Unfortunately, both the DPO low-dose and the DPO high-
dose treatment failed to accelerate the process of revasculari-
zation, as indicated by a similar functional capillary density 
between the 3 experimental groups throughout the observa-
tion period. In fact, the DPO low-dose treatment showed 
an even lower angiogenic response when compared to the 
EPO treatment performed in our previous study [30]. Fur-
thermore, the relative size of the vascular network and the 

endocrine revascularization did not differ between the three 
experimental groups. However, the DPO high-dose treat-
ment increased the blood volume flow in the transplanted 
islets. This might be due to a vasodilatory effect of DPO, 
which is caused by an enhanced expression of eNOS, lead-
ing to a higher level of NO [37]. We observed a similar 
vasodilatory effect of EPO on the blood vessels of the dor-
sal skinfold chamber tissue [30]. Anneren et al. [38] dem-
onstrated that a reduced insulin secretion accompanies a 
decreased blood flow in transplanted islets. Therefore, it can 
be assumed that the increased blood volume flow, observed 
in DPO high-dose-treated animals, also improves the grafts 
endocrine function.

As expected, the cellular composition of the transplanted 
islets was not affected by DPO treatment. We observed no 
differences in the ratio of insulin- and CD31-positive islet 
cells between the study groups. The Tie-2/GFP-positive 
donor mice allowed additional analysis of the origin of intra-
islet endothelial cells. Our results revealed that donor islet 
endothelial cells only contributed to 9–13% to the islet vas-
culature. This is in line with previous studies, demonstrating 
that the revascularization of transplanted islets is caused by 
recipient endothelial cells of host origin with an only lesser 
role of donor islet endothelial cells [18, 39, 40].

DPO stimulates erythropoiesis and thereby increases 
RBC count, hemoglobin and hematocrit levels [41, 42]. In 
the present study, the analysis of blood samples on day 14 
revealed that only DPO high-dose treatment significantly 
enhances the red blood cell count, hemoglobin and hemato-
crit levels compared to both the DPO low dose and the con-
trol group. There is evidence that this hematopoietic effect 
of DPO is entailed to a higher risk of thromboembolic events 
[43–45]. In contrast, Lindenblatt et al. [37] could demon-
strate that DPO-stimulated erythropoiesis is not necessar-
ily associated with an elevated risk of thrombus formation, 
as long as NO production serves as protective mechanism. 
Still, the effects of raised hematocrit levels induced by ESAs 
require further investigation, before the carefree application 
in a clinical setting can be considered.

Most of the current concepts to improve the revasculari-
zation of transplanted islets are based on tissue engineering 
approaches [46–48] rather than pharmacology strategies [30, 

Table 1   Neutrophilic granulocytes, monocytes (109/L), hematocrit (%), hemoglobin (g/dl) and RBC (1012/L) of the recipient animals on day 14 
after transplantation, which were treated with vehicle (ctrl, n = 9), DPO low dose (n = 9) or DPO high dose (n = 9)

All data are mean ± SEM. *P < 0.05 versus ctrl; #P < 0.05 versus DPO low dose

Neutrophilic granulo-
cytes (109/L)

Monocytes (109/L) Hematocrit (%) Hemoglobin (g/dL) RBC (1012/L)

ctrl 1.2 ± 0.2 0.27 ± 0.04 34.3 ± 3.0 10.1 ± 1.4 7.1 ± 0.7
DPO low 1.1 ± 0.3 0.20 ± 0.05 39.0 ± 3.3 11.7 ± 1.4 8.4 ± 0.7
DPO high 1.7 ± 0.5 0.15 ± 0.09 58.0 ± 1.4*# 20.5 ± 0.5*# 11.5 ± 0.4*#
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49]. We herein found that DPO treatment does not accelerate 
the revascularization process of transplanted pancreatic islets. 
However, the glycoprotein increases the blood volume flow 
of the grafts resulting in an improved microvascular func-
tion. Thus, our results may indicate that DPO treatment could 
improve the transplantation and the outcome of tissue-engi-
neered islets, i.e. islets which were prevascularized before 
transplantation [50–52]. In addition, although our data show 
that DPO does not improve revascularization and engraft-
ment, its increase in microvascular blood volume flow may 
have the potential to improve the function of successfully 
revascularized islets at later time points after transplantation.
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