296 research outputs found

    The regulatory mechanisms of NG2/CSPG4 expression

    Get PDF
    Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), is a surface type I transmembrane core proteoglycan that is crucially involved in cell survival, migration and angiogenesis. NG2 is frequently used as a marker for the identification and characterization of certain cell types, but little is known about the mechanisms regulating its expression. In this review, we provide evidence that the regulation of NG2 expression underlies inflammation and hypoxia and is mediated by methyltransferases, transcription factors, including Sp1, paired box (Pax) 3 and Egr-1, and the microRNA miR129-2. These regulatory factors crucially determine NG2-mediated cellular processes such as glial scar formation in the central nervous system (CNS) or tumor growth and metastasis. Therefore, they are potential targets for the establishment of novel NG2-based therapeutic strategies in the treatment of CNS injuries, cancer and other conditions of these types

    Macrophages promote network formation and maturation of transplanted adipose tissue-derived microvascular fragments

    Get PDF
    Adipose tissue-derived microvascular fragments rapidly reassemble into microvascular networks within implanted scaffolds. Herein, we analyzed the contribution of macrophages to this process. C57BL/6 mice received clodronate (clo)-containing liposomes for macrophage depletion, whereas animals treated with phosphate-buffered-saline-containing liposomes served as controls. Microvascular fragments were isolated from clo- and phosphate-buffered-saline-treated donor mice and seeded onto collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of clo- and phosphate-buffered-saline-treated recipient mice. The implants' vascularization and incorporation were analyzed by stereomicroscopy, intravital fluorescence microscopy, histology, and immunohistochemistry. Compared to controls, matrices within clo-treated animals exhibited a significantly reduced functional microvessel density. Moreover, they contained a lower fraction of microvessels with an Ī±-smooth muscle actin (SMA)+ cell layer, indicating impaired vessel maturation. This was associated with a deteriorated implant incorporation. These findings demonstrate that macrophages not only promote the reassembly of microvascular fragments into microvascular networks, but also improve their maturation during this process

    Early Host Tissue Response to Different Types of Vascular Prostheses Coated with Silver Acetate or Vaporized Metallic Silver

    Get PDF
    ObjectivesIn vascular surgery, the infection of prosthetic vascular grafts represents a serious life-threatening complication. Due to the increasing resistance of hospital micro-organisms to standard antibiotic therapies, maximum effort should be put in the primary prevention of such infections. For this purpose, grafts may be coated with different antibacterial silver formulations. In the present study the different effects of silver acetate-coating and vaporized metallic silver-coating on the vascularization and perigraft inflammation during the initial phase after implantation of Intergard Silver (IS) and Silver Graft (SG) were compared.MethodsSilver acetate-coated IS and vaporized metallic silver-coated SG were implanted into the dorsal skinfold chamber of C57BL/6 mice (nĀ =Ā 8 per group) to study angiogenesis and leukocyte inflammation at the implantation site by means of repetitive intravital fluorescence microscopy over a 14-day period. At the end of the inĀ vivo experiments, apoptosis and cell proliferation in the newly developed granulation tissue surrounding the implants was analyzed by immunohistochemistry.ResultsIS exhibited an improved vascularization, resulting in a significantly higher functional capillary density when compared to SG. Moreover, the leukocyte inflammatory response to IS was less pronounced, as indicated by a reduced number of adherent leukocytes in perigraft venules. This was associated with a higher proliferative activity of the granulation tissue incorporating the IS when compared to SG. The numbers of apoptotic cells in the perigraft tissue were low and did not differ between the two groups.ConclusionSilver acetate-coated IS exhibits an improved vascularization and reduced perigraft inflammation during the first 14 days after implantation when compared to vaporized metallic silver-coated SG. This may contribute to reducing the risk of early perigraft seroma formation and subsequent infection

    Redox signals at the ER-mitochondria interface control melanoma progression.

    No full text
    Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease

    Bone Healing Gone Wrong : Pathological Fracture Healing and Non-Unionsā€”Overview of Basic and Clinical Aspects and Systematic Review of Risk Factors

    Get PDF
    Bone healing is a multifarious process involving mesenchymal stem cells, osteoprogenitor cells, macrophages, osteoblasts and -clasts, and chondrocytes to restore the osseous tissue. Particularly in long bones including the tibia, clavicle, humerus and femur, this process fails in 2ā€“10% of all fractures, with devastating effects for the patient and the healthcare system. Underlying reasons for this failure are manifold, from lack of biomechanical stability to impaired biological host conditions and wound-immanent intricacies. In this review, we describe the cellular components involved in impaired bone healing and how they interfere with the delicately orchestrated processes of bone repair and formation. We subsequently outline and weigh the risk factors for the development of non-unions that have been established in the literature. Therapeutic prospects are illustrated and put into clinical perspective, before the applicability of biomarkers is finally discussed

    Erythropoietin exposure of isolated pancreatic islets accelerates their revascularization after transplantation

    Get PDF
    Aims The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. Methods Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. Results We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. Conclusion These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation

    Angiogenesis in tissue engineering : Breathing life into constructed tissue substitutes

    Get PDF
    Long-term function of three-dimensional (3D) tissue constructs depends on adequate vascularization after implantation. Accordingly, research in tissue engineering has focused on the analysis of angiogenesis. For this purpose, 2 sophisticated in vivo models (the chorioallantoic membrane and the dorsal skinfold chamber) have recently been introduced in tissue engineering research, allowing a more detailed analysis of angiogenic dysfunction and engraftment failure. To achieve vascularization of tissue constructs, several approaches are currently under investigation. These include the modification of biomaterial properties of scaffolds and the stimulation of blood vessel development and maturation by different growth factors using slow-release devices through pre-encapsulated microspheres. Moreover, new microvascular networks in tissue substitutes can be engineered by using endothelial cells and stem cells or by creating arteriovenous shunt loops. Nonetheless, the currently used techniques are not sufficient to induce the rapid vascularization necessary for an adequate cellular oxygen supply. Thus, future directions of research should focus on the creation of microvascular networks within 3D tissue constructs in vitro before implantation or by co-stimulation of angiogenesis and parenchymal cell proliferation to engineer the vascularized tissue substitute in situ

    Microcirculatory alterations in ischemiaā€“reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition

    Get PDF
    Experimental studies in ischemiaā€“reperfusion and sepsis indicate that activated protein C (APC) has direct anti-inflammatory effects at a cellular level. In vivo, however, the mechanisms of action have not been characterized thus far. Intravital multifluorescence microscopy represents an elegant way of studying the effect of APC on endotoxin-induced leukocyteā€“endothelial-cell interaction and nutritive capillary perfusion failure. These studies have clarified that APC effectively reduces leukocyte rolling and leukocyte firm adhesion in systemic endotoxemia. Protection from leukocytic inflammation is probably mediated by a modulation of adhesion molecule expression on the surface of leukocytes and endothelial cells. Of interest, the action of APC and antithrombin in endotoxin-induced leukocyteā€“endothelial-cell interaction differs in that APC inhibits both rolling and subsequent firm adhesion, whereas antithrombin exclusively reduces the firm adhesion step. The biological significance of this differential regulation of inflammation remains unclear, since both proteins are capable of reducing sepsis-induced capillary perfusion failure. To elucidate whether the action of APC and antithrombin is mediated by inhibition of thrombin, the specific thrombin inhibitor hirudin has been examined in a sepsis microcirculation model. Strikingly, hirudin was not capable of protecting from sepsis-induced microcirculatory dysfunction, but induced a further increase of leukocyteā€“endothelial-cell interactions and aggravated capillary perfusion failure when compared with nontreated controls. Thus, the action of APC on the microcirculatory level in systemic endotoxemia is unlikely to be caused by a thrombin inhibition-associated anticoagulatory action
    • ā€¦
    corecore