23 research outputs found

    Quantifying nutrient cycling and retention in coastal waters at the global scale

    No full text
    info:eu-repo/semantics/nonPublishe

    Regional carbon and CO2 budgets of North Sea tidal estuaries

    No full text
    This study presents the first regional application of the generic estuarine reactive-transport model C-GEM (Carbon-Generic Estuary Model) that is here combined with high-resolution databases to produce a carbon and CO2 budget for all tidal estuaries discharging into the North Sea. Steady-state simulations are performed for yearly-averaged conditions to quantify the carbon processing in the six main tidal estuaries Elbe, Ems, Humber, Scheldt, Thames, and Weser, which show contrasted physical and biogeochemical dynamics and contribute the most to the regional filter. The processing rates derived from these simulations are then extrapolated to the riverine carbon loads of all the other North Sea catchments intercepted by smaller tidal estuarine systems. The Rhine-Meuse estuarine system is also included in the carbon budget and overall, we calculate that the export of organic and inorganic carbon from tidal estuaries to the North sea amounts to 44 and 409 Gmol C yr-1, respectively, while 41 Gmol C are lost annually through CO2 outgassing. The carbon is mostly exported from the estuaries in its inorganic form (>90%), a result that reflects the low organic/inorganic carbon ratio of the riverine waters, as well as the very intense decomposition of organic carbon within the estuarine systems. Our calculations also reveal that with a filtering capacity of 15% for total carbon, the contribution of estuaries to the CO2 outgassing is relatively small. Organic carbon dynamics is dominated by heterotrophic degradation, which also represents the most important contribution to the estuarine CO2 evasion. Nitrification only plays a marginal role in the CO2 dynamics, while the contribution of riverine oversaturated waters to the CO2 outgassing is generally significant and strongly varies across systems.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    A novel sea surface pCO2-product for the global coastal ocean resolving trends over the 1982–2020 period

    No full text
    In recent years, advancements in machine learning based interpolation methods have enabled the production of high-resolution maps of sea surface partial pressure of CO2 (pCO2) derived from observations extracted from databases such as the Surface Ocean CO2 Atlas (SOCAT). These pCO2-products now allow quantifying the oceanic air-sea CO2 exchange based on observations. However, most of them do not yet explicitly include the coastal ocean. Instead, they simply extend the open ocean values onto the nearshore shallow waters, or their spatial resolution is simply so coarse that they do not accurately capture the highly heterogeneous spatiotemporal pCO2 dynamics of coastal zones. Until today, only one global pCO2-product was specifically designed for the coastal ocean (Laruelle et al. 2017). This product however has shortcomings because it only provides a climatology covering a relatively short period (1998–2015), thus hindering its application to the evaluation of the interannual variability and the long-term trends of the coastal air-sea CO2 exchange, a temporal evolution that is still poorly understood and highly debated. Here we aim at closing this knowledge gap and update the coastal product of Laruelle et al. (2017) to investigate the longest global monthly time series available for the coastal ocean from 1982 to 2020. The method remains based on a 2-step Self Organizing Maps and Feed Forward Network method adapted for coastal regions, but we include additional environmental predictors and use a larger pool of training and validation data with ~ 18 million direct observations extracted from the latest release of the SOCAT database. Our study reveals that the coastal ocean has been acting as an atmospheric CO2 sink of -0.4 Pg C yr-1 (-0.2 Pg C yr-1 with a narrower coastal domain) on average since 1982, and the intensity of this sink has increased at a rate of 0.1 Pg C yr-1 decade-1 (0.03 Pg C yr-1 decade-1 with a narrower coastal domain) over time. Our results also show that the temporal trend in the air-sea pCO2 gradient plays a significant role in the decadal evolution of the coastal CO2 sink, along with wind speed and sea-ice coverage changes that can also play an important role in some regions, particularly at high latitudes. This new reconstructed coastal pCO2-product (Roobaert et al. 2023, https://www.ncei.noaa.gov/archive/accession/0279118) allows establishing regional carbon budgets requiring high-resolution coastal flux estimates and provides new constraints for closing the global carbon cycle.info:eu-repo/semantics/publishe

    A novel sea surface pCO2_2-product for the global coastal ocean resolvingtrends over 1982--2020

    No full text
    In recent years, advancements in machine learning based interpolation methods have enabled the production of high-resolution maps of sea surface partial pressure of CO2 (pCO2) derived from observations extracted from databases such as the Surface Ocean CO2 Atlas (SOCAT). These pCO2-products now allow quantifying the oceanic air–sea CO2 exchange based on observations. However, most of them do not yet explicitly include the coastal ocean. Instead, they simply extend the open ocean values onto the nearshore shallow waters, or their spatial resolution is simply so coarse that they do not accurately capture the highly heterogeneous spatiotemporal pCO2 dynamics of coastal zones. Until today, only one global pCO2-product has been specifically designed for the coastal ocean (Laruelle et al. 2017). This product, however, has shortcomings because it only provides a climatology covering a relatively short period (1998–2015), thus hindering its application to the evaluation of the interannual variability, decadal changes and the long-term trends of the coastal air–sea CO2 exchange, a temporal evolution that is still poorly understood and highly debated. Here we aim at closing this knowledge gap and update the coastal product of Laruelle et al. (2017) to investigate the longest global monthly time series available for the coastal ocean from 1982 to 2020. The method remains based on a two-step Self-Organizing Maps and Feed-Forward Network method adapted for coastal regions, but we include additional environmental predictors and use a larger pool of training and validation data with ∌18 million direct observations extracted from the latest release of the SOCAT database. Our study reveals that the coastal ocean has been acting as an atmospheric CO2 sink of −0.40 Pg C yr−1 (−0.18 Pg C yr−1 with a narrower coastal domain) on average since 1982, and the intensity of this sink has increased at a rate of 0.06 Pg C yr−1 decade−1 (0.02 Pg C yr−1 decade−1 with a narrower coastal domain) over time. Our results also show that the temporal changes in the air–sea pCO2 gradient plays a significant role in the long-term evolution of the coastal CO2 sink, along with wind speed and sea-ice coverage changes that can also play an important role in some regions, particularly at high latitudes. This new reconstructed coastal pCO2-product (https://doi.org/10.25921/4sde-p068; Roobaert et al. 2023) allows us to establish regional carbon budgets requiring high-resolution coastal flux estimates and provides new constraints for closing the global carbon cycle.info:eu-repo/semantics/publishe

    Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle

    Get PDF
    The implications of climate change and other human perturbations on the oceanic carbon cycle are still associated with large uncertainties. Global-scale modelling studies are essential to investigate anthropogenic perturbations of oceanic carbon fluxes but, until now, they have not considered the impacts of temporal changes in riverine and atmospheric inputs of P and N on the marine net biological productivity (NPP) and air–sea CO2 exchange (FCO2). To address this, we perform a series of simulations using an enhanced version of the global ocean biogeochemistry model HAMOCC to isolate effects arising from (1) increasing atmospheric CO2 levels, (2) a changing physical climate and (3) alterations in inputs of terrigenous P and N on marine carbon cycling over the 1905–2010 period. Our simulations reveal that our first-order approximation of increased terrigenous nutrient inputs causes an enhancement of 2.15 Pg C year−1 of the global marine NPP, a relative increase of +5% over the simulation period. This increase completely compensates the simulated NPP decrease as a result of increased upper ocean stratification of −3% in relative terms. The coastal ocean undergoes a global relative increase of 14% in NPP arising largely from increased riverine inputs, with regional increases exceeding 100%, for instance on the shelves of the Bay of Bengal. The imprint of enhanced terrigenous nutrient inputs is also simulated further offshore, inducing a 1.75 Pg C year−1 (+4%) enhancement of the NPP in the open ocean. This finding implies that the perturbation of carbon fluxes through coastal eutrophication may extend further offshore than that was previously assumed. While increased nutrient inputs are the largest driver of change for the CO2 uptake at the regional scale and enhance the global coastal ocean CO2 uptake by 0.02 Pg C year−1, they only marginally affect the FCO2 of the open ocean over our study's timeline.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Air–water CO2 evasion from US East Coast estuaries

    Get PDF
    This study presents the first regional-scale assessment of estuarine CO2 evasion along the US East Coast (25-45° N). The focus is on 42 tidal estuaries, which together drain a catchment of 697 000 km2 or 76 % of the total area within this latitudinal band. The approach is based on the Carbon-Generic Estuary Model (C-GEM) that allows the simulation of hydrodynamics, transport, and biogeochemistry for a wide range of estuarine systems using readily available geometric parameters and global databases of seasonal climatic, hydraulic, and riverine biogeochemical information. Our simulations, performed using conditions representative of the year 2000, suggest that, together, US East Coast estuaries emit 1.9 Tg C yr-1 in the form of CO2, which corresponds to about 40 % of the carbon inputs from rivers, marshes, and mangroves. Carbon removal within estuaries results from a combination of physical (outgassing of supersaturated riverine waters) and biogeochemical processes (net heterotrophy and nitrification). The CO2 evasion and its underlying drivers show important variations across individual systems, but reveal a clear latitudinal pattern characterized by a decrease in the relative importance of physical over biogeochemical processes along a north-south gradient. Finally, the results reveal that the ratio of estuarine surface area to the river discharge, S/Q (which has a scale of per meter discharged water per year), could be used as a predictor of the estuarine carbon processing in future regional- A nd global-scale assessments.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore