419 research outputs found

    Middle Miocene to Pliocene History of Antarctica and the Southern Ocean

    Get PDF
    This chapter explores the Middle Miocene to Pliocene terrestrial and marine records of Antarctica and the Southern Ocean. The structure of the chapter makes a clear distinction between terrestrial and marine records as well as proximal (on or around Antarctica) and more distal records (Southern Ocean). Particular geographical regions are identified that reflect the areas for which the majority of palaeoenvironmental and palaeoclimatic information exist. Specifically, the chapter addresses the terrestrial sedimentary and fjordal environments of the Transantarctic Mountains and Lambert Glacier region, the terrestrial fossil record of Antarctic climate, terrestrial environments of West Antarctica, and the marine records of the East Antarctic Ice Sheet (EAIS), the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS), as well as the marine record of the Southern Ocean. Previous and current studies focusing on modelling Middle Miocene to Pliocene climate, environments and ice sheets are discussed.Published401-4631.8. Osservazioni di geofisica ambientale3.8. Geofisica per l'ambientereserve

    Geomorphic and shallow-acoustic investigation of an Antarctic Peninsula fjord system using high-resolution ROV and shipboard geophysical observations: Ice dynamics and behaviour since the Last Glacial Maximum

    Get PDF
    © 2016 Detailed bathymetric and sub-bottom acoustic observations in Bourgeois Fjord (Marguerite Bay, Antarctic Peninsula) provide evidence on sedimentary processes and glacier dynamics during the last glacial cycle. Submarine landforms observed in the 50 km-long fjord, from the margins of modern tidewater glaciers to the now ice-distal Marguerite Bay, are described and interpreted. The landforms are grouped into four morpho-sedimentary systems: (i) glacial advance and full-glacial; (ii) subglacial and ice-marginal meltwater; (iii) glacial retreat and neoglaciation; and (iv) Holocene mass-wasting. These morpho-sedimentary systems have been integrated with morphological studies of the Marguerite Bay continental shelf and analysed in terms of the specific sedimentary processes and/or stages of the glacial cycle. They demonstrate the action of an ice-sheet outlet glacier that produced drumlins and crag-and-tail features in the main and outer fjord. Meltwater processes eroded bedrock channels and ponds infilled by fine-grained sediments. Following the last deglaciation of the fjord at about 9000 yr BP, subsequent Holocene neoglacial activity involved minor readvances of a tidewater glacier terminus in Blind Bay. Recent stillstands and/or minor readvances are inferred from the presence of a major transverse moraine that indicates grounded ice stabilization, probably during the Little Ice Age, and a series of smaller landforms that reveal intermittent minor readvances. Mass-wasting processes also affected the walls of the fjord and produced scars and fan-shaped deposits during the Holocene. Glacier-terminus changes during the last six decades, derived from satellite images and aerial photographs, reveal variable behaviour of adjacent tidewater glaciers. The smaller glaciers show the most marked recent retreat, influenced by regional physiography and catchment-area size

    The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    Get PDF
    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella

    Processes influencing differences in Arctic and Antarctic Trough Mouth Fan sedimentology

    Get PDF
    Trough Mouth Fans (TMFs) are sediment depocentres that form along high-latitude continental margins at the mouths of some cross-shelf troughs. They reflect the dynamics of past ice sheets over multiple glacial cycles and processes operating on (formerly) glaciated continental shelves and slopes, such as erosion, reworking, transport and deposition. The similarities and differences in TMF morphology and formation processes of the Arctic and Antarctic regions remain poorly constrained. Here, we analyse the dimensions and geometries of 15 TMFs from Arctic and Antarctic margins and the grain-size distribution of 82 sediment cores centred on them. We compare the grain-size composition of sub- and proglacial diamictons deposited on the shelves and glacigenic-debris flows (GDFs) deposited on the adjacent TMFs and find a significant difference between Arctic and Antarctic margins. Antarctic margins show a coarser grain-size composition for both GDFs and shelf diamictons. This significant difference provides insight into high-latitude sediment input, transportation and glacial/interglacial regimes. We suggest that surface run-off and river discharge are responsible for enhanced fine-grained sediment input in the Arctic compared to in the Antarctic

    Bathymetric controls on calving processes at Pine Island Glacier

    Get PDF
    Pine Island Glacier is the largest current Antarctic contributor to sea level rise. Its ice loss has substantially increased over the last 25 years through thinning, acceleration and grounding line retreat. However, the calving line positions of the stabilizing ice shelf did not show any trend within the observational record (last 70 years) until calving in 2015 led to unprecedented retreat and changed alignment of the calving front. Bathymetric surveying revealed a ridge below the former ice shelf and two shallower highs to the north. Satellite imagery shows that ice contact on the ridge likely was lost in 2006 but was followed by intermittent contact resulting in back stress fluctuations on the ice shelf. Continuing ice shelf flow also led to occasional ice shelf contact with the northern bathymetric highs, which initiated rift formation that led to calving. The observations show that bathymetry is an important factor in initiating calving events

    Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs

    Get PDF
    Most of the oil in low temperature, non‐uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate‐amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110‐fold greater. This suggests that oil‐to‐methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs

    Cenozoic history of Antarctic glaciation and climate from onshore and offshore studies

    Get PDF
    The past three decades have seen a sustained and coordinated effort to refine the seismic stratigraphic framework of the Antarctic margin that has underpinned the development of numerous geological drilling expeditions from the continental shelf and beyond. Integration of these offshore drilling datasets covering the Cenozoic era with Antarctic inland datasets, provides important constraints that allow us to understand the role of Antarctic tectonics, the Southern Ocean biosphere, and Cenozoic ice sheet dynamics and ice sheet–ocean interactions on global climate as a whole. These constraints are critical for improving the accuracy and precision of future projections of Antarctic ice sheet behaviour and changes in Southern Ocean circulation. Many of the recent advances in this field can be attributed to the community-driven approach of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet Dynamics (PAIS) research programme and its two key subcommittees: Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions. Since 2012, these two PAIS subcommittees provided the forum to initiate, promote, coordinate and study scientific research drilling around the Antarctic margin and the Southern Ocean. Here we review the seismic stratigraphic margin architecture, climatic and glacial history of the Antarctic continent following the break-up of Gondwanaland in the Cretaceous, with a focus on records obtained since the implementation of PRAMSO. We also provide a forward-looking approach for future drilling proposals in frontier locations critically relevant for assessing future Antarctic ice sheet, climatic and oceanic change.We thank many people who collaborated, by sharing data and ideas, on geoscience research projects under the umbrella of the highly successful Paleoclimate Records from the Antarctic Margin and Southern Ocean (PRAMSO) and Palaeotopographic-Palaeobathymetric Reconstructions subcommittees of the Scientific Committee on Antarctic Research (SCAR) Past Antarctic Ice Sheet scientific program. This synthesis, which reflects our views, would not have been possible without the efforts of these many investigators, most of whom continue their collaborative Antarctic studies, now under the successor SCAR INSTANT programme. Chris Sorlien is thanked for drafting Fig. 3.6. We thank John Anderson, Peter Barrett, Giuliano Brancolini and Alan Cooper for their useful comments and for their continuous dedication to the past Antarctic Ice Sheet evolution reconstructions. We thank Nigel Wardell, Frank Nitsche and Paolo Diviacco for maintaining the Seismic Data Library System and the National Antarctic funding agencies of many countries (Australia, China, Germany, Italy, Japan, Korea, New Zealand, Russia, Spain, the UK, the United States) for supporting geophysical and geological surveys essential for Paleotopographic and Paleobathymetric reconstructions. We thank the International Ocean Discovery Program (IODP) for its support of recent expeditions that arose out of PRAMSO discussions. R.M. was funded by the Royal Society Te Apārangi NZ Marsden Fund (grant 18-VUW-089). C.E. acknowledges funding by the Spanish Ministry of Economy, Industry and Competitivity (grants CTM2017-89711-C2-1/2-P), cofunded by the European Union through FEDER funds. L.D.S. and F.D. were funded by the Programma Nazionale delle Ricerche in Antartide (PNRA16_00016 project and PNRA 14_00119). R.Larter and C.D.H. were funded by the BAS Polar Science for Planet Earth Programme and NERC UK IODP grant NE/J006548/1. S.K. was supported by the KOPRI Grant (PE21050). L.P. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 792773 WAMSISE. A.S. and S.G. were funded by NSF Office of Polar Programs (Grants OPP-1744970 (A.S.), -1143836 (A.S.), and -1143843 (S.G.). This is University of Texas Institute for Geophysics Contribution #3784. B.D. acknowledges funding from a Rutherford Foundation Postdoctoral Fellowship (RFT-VUW1804-PD). K.G. and G.K. were funded by AWI research programme Polar Regions and Coasts in the changing Earth System (PACES II) and the Sub-EIS-Obs programme by the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). RL, RM, TN acknowledge support from MBIE Antarctic Science Platform contract ANTA1801

    Methanogenic crude oil-degrading microbial consortia are not universally abundant in anoxic environments

    Get PDF
    Crude oil-amended microcosms were prepared with inocula from eleven anoxic environments (4 river sediments, 3 lake sediments, and 4 sludges from wastewater treatment reactors) to determine their ability to produce methane from the biodegradation of crude oil. Over incubation periods of up to 1150 days, oil-stimulated methanogenesis and concomitant loss of alkanes occurred in microcosms prepared with five of the inocula whereas six of the inocula did not show oil-stimulated methane production. Bacterial and archaeal communities from microcosms exhibiting high levels of oil-stimulated methanogenesis were distinct from communities where methanogenic crude oil degradation was not detected. Successional changes were consistent with the quantitative enrichment of syntrophic hydrocarbon degrading bacteria and methanogens over time. In conclusion, in oil-impacted environments methanogenic crude oil-degrading microbial consortia are present in relatively low abundance and exhibit slow growth, and while they may be ubiquitously distributed they may not be present at sufficiently high abundance to be detected

    Microbotanical residues for the study of early hominin tools

    Get PDF
    More than 2 million years ago in East Africa, the earliest hominin stone tools evolved amidst changes in resource base, with pounding technology playing a key role in this adaptive process. Olduvai Gorge (now Oldupai) is a famed locality that remains paramount for the study of human evolution, also yielding some of the oldest battering tools in the world. However, direct evidence of the resources processed with these technologies is lacking entirely. One way to obtain this evidence is through the analysis of surviving residues. Yet, linking residues with past processing activities is not simple. In the case of plant exploitation, this link can only be established by assessing site-based reference collections inclusive of both anthropogenic and natural residues as a necessary first step and comparative starting point. In this paper, we assess microbotanical remains from rock clasts sourced at the same quarry utilized by Oldowan hominins at Oldupai Gorge. We mapped this signal and analysed it quantitatively to classify its spatial distribution objectively, extracting proxies for taxonomic identification and further comparison with freestanding soils. In addition, we used blanks to manufacture pounding tools for blind, controlled replication of plant processing. We discovered that stone blanks are in fact environmental reservoirs in which plant remains are trapped by lithobionts, preserved as hardened accretions. Tool use, on the other hand, creates residue clusters; however, their spatial distribution can be discriminated from purely natural assemblages by the georeferencing of residues and statistical analysis of resulting patterns. To conclude, we provide a protocol for best practice and a workflow that has the advantage of overcoming environmental noise, reducing the risk of false positive, delivering a firm understanding of residues as polygenic mixtures, a reliable use of controls, and most importantly, a stronger link between microbotanical remains and stone tool use. © 2022. The Author(s).Materials and methods Results - Blanks as environmental reservoirs - Utilization creates residue clusters - Anthropogenic residue distribution - Of lichen habitability, proxy palimpsests, and hardened accretions - A protocol to study plant residue from Oldowan pounding tool
    corecore