1,306 research outputs found

    First description of the environmental niche of the epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis (Dinophyceae) from Eastern Australia

    Full text link
    © 2019 Phycological Society of America Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1-D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m−2 · s−1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m−2 · s−1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m−2 · s−1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m−2 · s−1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management

    Bloom drivers of the potentially harmful dinoflagellate Prorocentrum minimum (Pavillard) Schiller in a south eastern temperate Australian estuary

    Full text link
    © 2018 Elsevier Ltd Harmful algal blooms are an increasing concern in the estuarine reaches of the Hawkesbury-Nepean River, one of the largest coastal rivers systems in south eastern Australia. In the austral spring of 2016, an unprecedented bloom of the harmful mixotrophic dinoflagellate Prorocentrum minimum occurred in Berowra Creek (maximum cell abundance 1.9E+06 cells L−1, 89% of the total phytoplankton community), a major tributary of this river system. In response to this bloom, our study utilises an estuary-wide, thirteen-year time series of phytoplankton abundance and environmental data to examine the spatial and temporal patterns of this harmful alga and its potential bloom drivers in this system. P. minimum cell densities and environmental parameters varied over large spatial scales, with sites located in the main channel of the estuary significantly differing from those in the more urbanized tributary of Berowra Creek. Generalised additive modelling outputs suggested that blooms of P. minimum are complex, but generally corresponded to a spatial gradient of eutrophication and salinity, whereby P. minimum growth and concomitant high chlorophyll-a concentrations were enhanced at sites that were generally less saline and more eutrophic than others. Furthermore, temporal patterns suggested that blooms occurred abruptly and lasted up to three weeks, most often during the austral autumn to spring. While significant correlations were observed between rainfall and nutrients at all other sites, suggesting a pathway for nutrient availability, the association between rainfall and nutrient delivery was generally not observed in Berowra Creek (a 15-m deep site) suggesting that a continual supply of nutrients, coupled with unique bathymetry and water residence time at this site, are the most likely contributing factors to phytoplankton growth. This study presents the most comprehensive examination of P. minimum in any southern hemisphere estuary to date and highlights the importance of continued monitoring of HABs and the important role that anthropogenic inputs have in driving blooms of P. minimum in this oyster-growing river/estuary system

    Quality Of Antenatal Care In Rural Southern Tanzania: A Reality Check.

    Get PDF
    Counselling on the danger signs of unpredictable obstetric complications and the appropriate management of such complications are crucial in reducing maternal mortality. The objectives of this study were to identify gaps in the provision of ANC services and knowledge of danger signs as well as the quality of care women receive in case of complications. The study took place in the Rufiji District of Tanzania in 2008 and was conducted in seven health facilities. The study used (1) observations from 63 antenatal care (ANC) sessions evaluated with an ANC checklist, (2) self-assessments of 11 Health workers, (3) interviews with 28 pregnant women and (4) follow-up of 12 women hospitalized for pregnancy-related conditions.Blood pressure measurements and abdominal examinations were common during ANC visits while urine testing for albumin or sugar or haemoglobin levels was rare which was often explained as due to a lack of supplies. The reasons for measuring blood pressure or abdominal examinations were usually not explained to the women. Only 15/28 (54%) women were able to mention at least one obstetric danger sign requiring medical attention. The outcomes of ten complicated cases were five stillbirths and three maternal complications. There was a considerable delay in first contact with a health professional or the start of timely interventions including checking vital signs, using a partograph, and detailed record keeping. Linking danger signs to clinical and laboratory examination results during ANC with the appropriate follow up and avoiding delays in emergency obstetric care are crucial to the delivery of coordinated, effective care interventions

    Modelling bloom formation of the toxic dinoflagellates Dinophysis acuminata and Dinophysis caudata in a highly modified estuary, south eastern Australia

    Full text link
    © 2016 Elsevier Ltd Dinoflagellates belonging to the toxigenic genus Dinophysis are increasing in abundance in the Hawkesbury River, south-eastern Australia. This study investigates a twelve year time series of abundance and physico-chemical data to model these blooms. Four species were reported over the sampling campaign - Dinophysis acuminata, Dinophysis caudata, Dinophysis fortii and Dinophysis tripos-with D. acuminata and D. caudata being most abundant. Highest abundance of D. acuminata occurred in the austral spring (max. abundance 4500 cells l−1), whilst highest D. caudata occurred in the summer to autumn (max. 12,000 cells l−1). Generalised additive models revealed abundance of D. acuminata was significantly linked to season, thermal stratification and nutrients, whilst D. caudata was associated with nutrients, salinity and dissolved oxygen. The models’ predictive capability was up to 60% for D. acuminata and 53% for D. caudata. Altering sampling strategies during blooms accompanied with in situ high resolution monitoring will further improve Dinophysis bloom prediction capability

    No excess of mitochondrial DNA deletions within muscle in progressive multiple sclerosis

    Get PDF
    BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority

    The Role of the Mucus Barrier in Digestion

    Get PDF
    Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained

    The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp.

    Full text link
    Ciguatera fish poisoning (CFP) is prevalent around the tropical and sub-tropical latitudes of the world and impacts many Pacific island communities intrinsically linked to the reef system for sustenance and trade. While the genus Gambierdiscus has been linked with CFP, it is commonly found on tropical reef systems in microalgal assemblages with other genera of toxin-producing, epiphytic and/or benthic dinoflagellates - Amphidinium, Coolia, Fukuyoa, Ostreopsis and Prorocentrum. Identifying a biomarker compound that can be used for the early detection of Gambierdiscus blooms, specifically in a mixed microalgal community, is paramount in enabling the development of management and mitigation strategies. Following on from the recent structural elucidation of 44-methylgambierone, its potential to contribute to CFP intoxication events and applicability as a biomarker compound for Gambierdiscus spp. was investigated. The acute toxicity of this secondary metabolite was determined by intraperitoneal injection using mice, which showed it to be of low toxicity, with an LD50 between 20 and 38 mg kg-1. The production of 44-methylgambierone by 252 marine microalgal isolates consisting of 90 species from 32 genera across seven classes, was assessed by liquid chromatography-tandem mass spectrometry. It was discovered that the production of this secondary metabolite was ubiquitous to the eight Gambierdiscus species tested, however not all isolates of G. carpenteri, and some species/isolates of Coolia and Fukuyoa

    Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies)

    Get PDF
    Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development

    Patients' views on responsibility for the management of musculoskeletal disorders – A qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Musculoskeletal disorders are very common and almost inevitable in an individual's lifetime. Enabling self-management and allowing the individual to take responsibility for care is stated as desired in the management of these disorders, but this may be asking more than people can generally manage. A willingness among people to take responsibility for musculoskeletal disorders and not place responsibility out of their hands or on employers but to be shared with medical professionals has been shown. The aim of the present study was to describe how people with musculoskeletal disorders think and reason regarding responsibility for prevention, treatment and management of the disorder.</p> <p>Methods</p> <p>Individual interviews with a strategic sample of 20 individuals with musculoskeletal disorders were performed. The interviews were tape-recorded, transcribed verbatim and analysed according to qualitative content analysis.</p> <p>Results</p> <p>From the interviews an overarching theme was identified: own responsibility needs to be met. The analysis revealed six interrelated categories: Taking on responsibility, Ambiguity about responsibility, Collaborating responsibility, Complying with recommendations, Disclaiming responsibility, and Responsibility irrelevant. These categories described different thoughts and reasoning regarding the responsibility for managing musculoskeletal disorders. Generally the responsibility for prevention of musculoskeletal disorders was described to lie primarily on society/authorities as they have knowledge of what to prevent and how to prevent it. When musculoskeletal disorders have occurred, health care should provide fast accessibility, diagnosis, prognosis and support for recovery. For long-term management, the individuals themselves are responsible for making the most out of life despite disorders.</p> <p>Conclusion</p> <p>No matter what the expressions of responsibility for musculoskeletal disorders are, own responsibility needs to be met by society, health care, employers and family in an appropriate way, with as much or as little of the "right type" of support needed, based on the individual's expectations.</p
    corecore