1,515 research outputs found

    Neonatal desensitisation for the study of regenerative medicine

    Get PDF
    Cell replacement is a therapeutic option for numerous diseases of the CNS. Current research has identified a number of potential human donor cell types, for which preclinical testing through xenotransplantation in animal models is imperative. Immune modulation is necessary to promote donor cell survival for sufficient time to assess safety and efficacy. Neonatal desensitization can promote survival of human donor cells in adult rat hosts with little impact on the health of the host and for substantially longer than conventional methods, and has subsequently been applied in a range of studies with variable outcomes. Reviewing these findings may provide insight into the method and its potential for use in preclinical studies in regenerative medicine

    POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA

    Get PDF
    Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression

    Enhanced cosmic-ray flux toward zeta Persei inferred from laboratory study of H3+ - e- recombination rate

    Full text link
    The H3+ molecular ion plays a fundamental role in interstellar chemistry, as it initiates a network of chemical reactions that produce many interstellar molecules. In dense clouds, the H3+ abundance is understood using a simple chemical model, from which observations of H3+ yield valuable estimates of cloud path length, density, and temperature. On the other hand, observations of diffuse clouds have suggested that H3+ is considerably more abundant than expected from the chemical models. However, diffuse cloud models have been hampered by the uncertain values of three key parameters: the rate of H3+ destruction by electrons, the electron fraction, and the cosmic-ray ionisation rate. Here we report a direct experimental measurement of the H3+ destruction rate under nearly interstellar conditions. We also report the observation of H3+ in a diffuse cloud (towards zeta Persei) where the electron fraction is already known. Taken together, these results allow us to derive the value of the third uncertain model parameter: we find that the cosmic-ray ionisation rate in this sightline is forty times faster than previously assumed. If such a high cosmic-ray flux is indeed ubiquitous in diffuse clouds, the discrepancy between chemical models and the previous observations of H3+ can be resolved.Comment: 6 pages, Nature, in pres

    A Novel Animal Model of Borrelia recurrentis Louse-Borne Relapsing Fever Borreliosis Using Immunodeficient Mice

    Get PDF
    Louse-borne relapsing fever (LBRF) borreliosis is caused by Borrelia recurrentis, and it is a deadly although treatable disease that is endemic in the Horn of Africa but has epidemic potential. Research on LBRF has been severely hampered because successful infection with B. recurrentis has been achieved only in primates (i.e., not in other laboratory or domestic animals). Here, we present the first non-primate animal model of LBRF, using SCID (-B, -T cells) and SCID BEIGE (-B, -T, -NK cells) immunocompromised mice. These animals were infected with B. recurrentis A11 or A17, or with B. duttonii 1120K3 as controls. B. recurrentis caused a relatively mild but persistent infection in SCID and SCID BEIGE mice, but did not proliferate in NUDE (-T) and BALB/c (wild-type) mice. B. duttonii was infectious but not lethal in all animals. These findings demonstrate that the immune response can limit relapsing fever even in the absence of humoral defense mechanisms. To study the significance of phagocytic cells in this context, we induced systemic depletion of such cells in the experimental mice by injecting them with clodronate liposomes, which resulted in uncontrolled B. duttonii growth and a one-hundred-fold increase in B. recurrentis titers in blood. This observation highlights the role of macrophages and other phagocytes in controlling relapsing fever infection. B. recurrentis evolved from B. duttonii to become a primate-specific pathogen that has lost the ability to infect immunocompetent rodents, probably through genetic degeneration. Here, we describe a novel animal model of B. recurrentis based on B- and T-cell-deficient mice, which we believe will be very valuable in future research on LBRF. Our study also reveals the importance of B-cells and phagocytes in controlling relapsing fever infection

    Antonovsky’s Sense of Coherence Scale: Cultural Validation of Soc Questionnaire and Socio-Demographic Patterns in an Italian Population

    Get PDF
    BACKGROUND: The theory of salutogenesis entails that the ability to use resources for one's wellbeing is more important than the resources themselves. This ability is referred to as the Sense of Coherence (SOC). This paper present the cross-culturally adapted version of the Italian questionnaire (13 items), and the psychometric and statistical testing of the SOC properties. It offers for the first time a view of the distribution of SOC in an Italian sample, and uses a multivariate method to clarify the effects of socio-demographic determinants on SOC. METHODS: The cross-cultural adaptation of the English SOC questionnaire was carried out according to the guidelines reported in literature. To evaluate the psychometric and statistical properties we assessed reliability, validity and frequency distribution of the collected data. A Generalised Linear Model was used to analyse the effects of socio demographic variables on SOC. RESULTS: The Italian SOC scale demonstrates a good internal consistency (α = 0.825). The model obtained with factorial analysis is not related to the traditional dimensions of SOC represented in more than one factor. The multivariate analysis highlights the joint influence of gender, age and education on SOC. CONCLUSION: The validated Italian questionnaire is now available. Socio-demographic variables should be taken into account as confounders when SOC values among different populations are compared. Presenting data on SOC of the Italian population makes a control population available for comparisons with specific subgroups, such as patient populations. Now, the Italian challenge is to integrate the salutogenic approach into Public Health police

    A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Significance Analysis of Microarrays (SAM) is a popular method for detecting significantly expressed genes and controlling the false discovery rate (FDR). Recently, it has been reported in the literature that the FDR is not well controlled by SAM. Due to the vast application of SAM in microarray data analysis, it is of great importance to have an extensive evaluation of SAM and its associated R-package (sam2.20).</p> <p>Results</p> <p>Our study has identified several discrepancies between SAM and sam2.20. One major difference is that SAM and sam2.20 use different methods for estimating FDR. Such discrepancies may cause confusion among the researchers who are using SAM or are developing the SAM-like methods. We have also shown that SAM provides no meaningful estimates of FDR and this problem has been corrected in sam2.20 by using a different formula for estimating FDR. However, we have found that, even with the improvement sam2.20 has made over SAM, sam2.20 may still produce erroneous and even conflicting results under certain situations. Using an example, we show that the problem of sam2.20 is caused by its use of asymmetric cutoffs which are due to the large variability of null scores at both ends of the order statistics. An obvious approach without the complication of the order statistics is the conventional symmetric cutoff method. For this reason, we have carried out extensive simulations to compare the performance of sam2.20 and the symmetric cutoff method. Finally, a simple modification is proposed to improve the FDR estimation of sam2.20 and the symmetric cutoff method.</p> <p>Conclusion</p> <p>Our study shows that the most serious drawback of SAM is its poor estimation of FDR. Although this drawback has been corrected in sam2.20, the control of FDR by sam2.20 is still not satisfactory. The comparison between sam2.20 and the symmetric cutoff method reveals that the relative performance of sam2.20 to the symmetric cutff method depends on the ratio of induced to repressed genes in a microarray data, and is also affected by the ratio of DE to EE genes and the distributions of induced and repressed genes. Numerical simulations show that the symmetric cutoff method has the biggest advantage over sam2.20 when there are equal number of induced and repressed genes (i.e., the ratio of induced to repressed genes is 1). As the ratio of induced to repressed genes moves away from 1, the advantage of the symmetric cutoff method to sam2.20 is gradually diminishing until eventually sam2.20 becomes significantly better than the symmetric cutoff method when the differentially expressed (DE) genes are either all induced or all repressed genes. Simulation results also show that our proposed simple modification provides improved control of FDR for both sam2.20 and the symmetric cutoff method.</p

    Use of technology in children's dietary assessment

    Get PDF
    Background: Information on dietary intake provides some of the most valuable insights for mounting intervention programmes for the prevention of chronic diseases. With the growing concern about adolescent overweight, the need to accurately measure diet becomes imperative. Assessment among adolescents is problematic as this group has irregular eating patterns and they have less enthusiasm for recording food intake. Subjects/Methods: We used qualitative and quantitative techniques among adolescents to assess their preferences for dietary assessment methods.Results: Dietary assessment methods using technology, for example, a personal digital assistant (PDA) or a disposable camera, were preferred over the pen and paper food record. Conclusions: There was a strong preference for using methods that incorporate technology such as capturing images of food. This suggests that for adolescents, dietary methods that incorporate technology may improve cooperation and accuracy. Current computing technology includes higher resolution images, improved memory capacity and faster processors that allow small mobile devices to process information not previously possible. Our goal is to develop, implement and evaluate a mobile device (for example, PDA, mobile phone) food record that will translate to an accurate account of daily food and nutrient intake among adolescents. This mobile computing device will include digital images, a nutrient database and image analysis for identification and quantification of food consumption. Mobile computing devices provide a unique vehicle for collecting dietary information that reduces the burden on record keepers. Images of food can be marked with a variety of input methods that link the item for image processing and analysis to estimate the amount of food. Images before and after the foods are eaten can estimate the amount of food consumed. The initial stages and potential of this project will be described
    • 

    corecore