285 research outputs found

    On the coupled thermo–electro–chemo–mechanical performance of structural batteries with emphasis on thermal effects

    Get PDF
    Carbon fibre (CF) based structural batteries is a type of battery designed to sustain mechanical loads. In this paper, a fully coupled thermo–electro–chemo–mechanical computational modelling framework for CF based structural batteries is presented. We consider the combined effects of lithium insertion in the carbon fibres leading to insertion strains, and thermal expansion/shrinkage of the constituents leading to thermal (free) strains, while assuming transverse isotropy. The numerical studies show that the developed framework is able to capture the coupled thermo–electro–chemo–mechanical behaviour. Moreover, it is found that the dominating source for heat generation during galvanostatic cycling is associated with discontinuities in the electrical and chemical potentials at the fibre/electrolyte interface. Further, a limited parameter study shows that the temperature change during electrochemical cycling is significantly influenced by the applied current, thermal properties of the constituents and heat exchange with the surroundings. Finally, for large temperature variations, e.g. as identified during relevant (dis)charge conditions, the magnitude of the thermal strains in the structural battery electrolyte (SBE) are found to be similar to the insertion induced strains

    Electro-chemo-mechanically coupled computational modelling of structural batteries

    Get PDF
    Structural batteries are multifunctional composites that combine load-bearing capacity with electro-chemical energy storage capability. The laminated architecture is considered in this paper, whereby restriction is made to a so called half-cell in order to focus on the main characteristics and provide a computational tool for future parameter studies. A thermodynamically consistent modelling approach is exploited for the relevant electro-chemo-mechanical system. We consider effects of lithium insertion in the carbon fibres, leading to insertion strains, while assuming transverse isotropy. Further, stress-assisted ionic transport is accounted for in addition to standard diffusion and migration. The relevant space-variational problems that result from time discretisation are established and evaluated in some detail. The proposed model framework is applied to a generic/idealized material representation to demonstrate its functionality and the importance of accounting for the electro-chemo-mechanical coupling effects. As a proof of concept, the numerical studies reveal that it is vital to account for two-way coupling in order to predict the multifunctional (i.e. combined electro-chemo-mechanical) performance of structural batteries

    Relationship between matrix production by bronchial fibroblasts and lung function and AHR in asthma

    Get PDF
    SummaryThe reasons for enhanced deposition of extracellular matrix in the airways of asthmatic patients and the subsequent consequences on lung function are uncertain. Here, we investigated the synthesis of procollagen I and proteoglycans, the activity of various metalloproteinases (MMPs) and the production of their inhibitor TIMP-1 in biopsy-derived bronchial fibroblasts from eight patients with stable mild-to-moderate asthma, and how they are related to patients’ lung function and airway hyperreactivity (AHR).Following 24-h fibroblast incubation in 0.4% serum, procollagen I carboxyterminal propeptide (PICP), TIMP-1 and MMP-1 in cell media were analysed by ELISA, MMP-2, MMP-3, MMP-9 by zymography and total proteoglycan production by [35S]-sulphate-incorporation/ion chromatography.Patients’ FEV1% predicted and methacholine log PD20 negatively correlated with PICP synthesized by patients’ bronchial fibroblasts (r = −0.74 and r = −0.71, respectively). PICP and proteoglycan amounts positively correlated (0.8 ≤ r ≤ 0.9) with MMP-2 and MMP-3 activity. A positive correlation (r = 0.75) was also found between proteoglycan production and TIMP-1. There was no correlation between MMP-9 activity and PICP or proteoglycan production. MMP-9 activity positively correlated with patients’ FEV1% predicted (r = 0.97) and methacholine log PD20 (r = 0.86), whereas negative associations (−0.6 ≤ r ≤ −0.7) were observed for MMP-2 and MMP-3.In stable mild-to-moderate asthma, increased procollagen I synthesis and activity of MMP-2 and MMP-3 in bronchial fibroblasts may negatively affect patients’ lung function and AHR. In contrast, MMP-9 activity was not associated with procollagen or proteoglycan production, or worsening of patients’ lung function and AHR. An enhanced production of procollagen I and proteoglycans might be a result of a negative feedback from their degradation by MMP-2 and MMP-3

    Unit cells for multiphysics modelling of structural battery composites

    Get PDF
    To predict the multifunctional performance of structural battery composites, multiple physical phenomena need to be studied simultaneously. Hence, multiphysics models are needed to evaluate the complete performance of this composite material. In this study the coupled analysis for multiphysics modelling of structural battery composites is presented and modelling strategies and unit cell designs are discussed with respect to the different physical models. Furthermore, FE-models are setup in the commercial Finite Element (FE) software COMSOL to study if existing physics-based modelling techniques and homogenization schemes for conventional lithium ion batteries can be used to describe the electrochemical behaviour of structural battery composites. To predict the microscopic behaviour, the local variation of the mass and charge concentrations need to be accounted for. Hence, refined models with appropriate boundary conditions are needed to capture the microscopic conditions inside the material. The numerical results demonstrate that conventional physics-based 1D battery models and homogenization schemes based on porous media theory can be used to predict the macroscopic electrical behaviour of the fibrous structural battery. For future work electrochemical experiments on battery cell level are planned to validate the numerical results

    Variationally consistent modeling of a sensor-actuator based on shape-morphing from electro-chemical–mechanical interactions

    Get PDF
    This paper concerns the computational modeling of a class of carbon fiber composites, known as shape-morphing and strain-sensing composites. The actuating and sensing performance of such (smart) materials is achieved by the interplay between electrochemistry and mechanics, in particular the ability of carbon fibers to (de)intercalate Li-ions repeatedly. We focus on the actuation and sensing properties of a beam in conjunction with the appropriate “through-the-thickness” properties. Thus, the electro-chemo-mechanical analysis is essentially two-dimensional, and it is possible to rely heavily on the results in Carlstedt et al. (2020). More specifically, the cross-sectional design is composed of two electrodes, consisting of (partly) lithiated carbon fibers embedded in structural battery electrolyte (SBE), on either side of a separator. As a result, the modeling is hierarchical in the sense that (macroscale) beam action is combined with electro-chemo-mechanical interaction along the beam. The setup is able to work as sensor or actuator depending on the choice of control (and response) variables. Although quite idealized, this design allows for a qualitative investigation. In this paper we demonstrate the capability of the developed framework to simulate both the actuator and sensor modes. As proof of concept, we show that both modes of functionality can be captured using the developed framework. For the actuator mode, the predicted deformation is found to be in close agreement with experimental data. Further, the sensor-mode is found to agree with experimental data available in the literature

    Finite Element Simulation of the Performance of a Structural Electrolyte

    Get PDF
    This contribution concerns the multi-scale and multi-physics finite element analysis of structural power composites, i.e. multifunctional composites with simultaneous load bearing and energy storing functionality. We are particularly interested in obtaining the effective macro-scale properties of the structural electrolyte by employing computational homogenization to capture the effects of micro-heterogeneities on the sub-scale. The sub-scale problem is defined by a statistical volume element that is numerically generated, and the effective properties are obtained by conducting virtual material testing on the synthetic microstructure

    Computational modelling of structural batteries accounting for stress-assisted convection in the electrolyte

    Get PDF
    Structural batteries consist of carbon fibres embedded in a porous structural battery electrolyte (SBE), which is composed of two continuous phases: a solid polymer skeleton and a liquid electrolyte containing Li-salt. In this paper we elaborate on a computational modelling framework to study the electro-chemo-mechanical properties of such structural batteries while accounting for the combined action from migration as well as stress-assisted diffusion and convection in the electrolyte. Further, we consider effects of lithium insertion in the carbon fibres, leading to insertion strains. The focus is placed on how the convective contribution to the mass transport within the SBE affects the general electro-chemo-mechanical properties. The numerical results indicate that the convective contribution has only minor influence on the multifunctional performance when the mechanical loading is caused by constrained deformation of constituents during electro-chemical cycling. However, in the case of externally applied mechanical loading that causes severe deformation of the SBE, or when large current pulses are applied, the convective contribution has noticeable influence on the electro-chemical performance. In addition, it is shown that the porosity of the SBE, which affects the effective stiffness as well as the mobility and permeability, has significant influence on the combined mechanical and electro-chemical performance

    Учебная практика «Медицинский уход» – первая ступень к практикоориентированному обучению в медицинском вузе

    Get PDF
    МЕДИЦИНСКИЕ УЧЕБНЫЕ ЗАВЕДЕНИЯОБРАЗОВАНИЕ МЕДИЦИНСКОЕСТУДЕНТЫ МЕДИЦИНСКИХ УЧЕБНЫХ ЗАВЕДЕНИЙПРАКТИКО-ОРИЕНТИРОВАННЫЙ ПОДХОДПРАКТИКО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕУЧЕБНАЯ ПРАКТИКАПРАКТИКА ОБЩАЯУХОД ЗА БОЛЬНЫ
    corecore