15,506 research outputs found

    Magnetic fields at the periphery of UCHII regions from carbon recombination line observations

    Get PDF
    Several indirect evidences indicate a magnetic origin for the non-thermal width of spectral lines observed toward molecular clouds. In this letter, I suggest that the origin of the non-thermal width of carbon recombination lines (CRLs) observed from photo-dissociation regions (PDRs) near ultra-compact \HII\ regions is magnetic and that the magnitude of the line width is an estimate of the \alfven speed. The magnetic field strengths estimated based on this suggestion compare well with those measured toward molecular clouds with densities similar to PDR densities. I conclude that multi-frequency CRL observations have the potential to form a new tool to determine the field strength near star forming regions.Comment: To appear in ApJ Letter

    Jamming, two-fluid behaviour and 'self-filtration' in concentrated particulate suspensions

    Full text link
    We study the flow of model experimental hard sphere colloidal suspensions at high volume fraction Φ\Phi driven through a constriction by a pressure gradient. Above a particle-size dependent limit Φ0\Phi_0, direct microscopic observations demonstrate jamming and unjamming--conversion of fluid to solid and vice versa--during flow. We show that such a jamming flow produces a reduction in colloid concentration Φx\Phi_{x} downstream of the constriction. We propose that this `self-filtration' effect is the consequence of a combination of jamming of the particulate part of the system and continuing flow of the liquid part, i.e. the solvent, through the pores of the jammed solid. Thus we link the concept of jamming in colloidal and granular media with a 'two-fluid'-like picture of the flow of concentrated suspensions. Results are also discussed in the light of Osborne Reynolds' original experiments on dilation in granular materials.Comment: 4 pages, 3 figure

    Dark cloud cores and gravitational decoupling from turbulent flows

    Full text link
    We test the hypothesis that the starless cores may be gravitationally bound clouds supported largely by thermal pressure by comparing observed molecular line spectra to theoretical spectra produced by a simulation that includes hydrodynamics, radiative cooling, variable molecular abundance, and radiative transfer in a simple one-dimensional model. The results suggest that the starless cores can be divided into two categories: stable starless cores that are in approximate equilibrium and will not evolve to form protostars, and unstable pre-stellar cores that are proceeding toward gravitational collapse and the formation of protostars. The starless cores might be formed from the interstellar medium as objects at the lower end of the inertial cascade of interstellar turbulence. Additionally, we identify a thermal instability in the starless cores. Under par ticular conditions of density and mass, a core may be unstable to expansion if the density is just above the critical density for the collisional coupling of the gas and dust so that as the core expands the gas-dust coupling that cools the gas is reduced and the gas warms, further driving the expansion.Comment: Submitted to Ap

    Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe

    Get PDF
    We study the evolution of an isolated, spherical halo of self-interacting dark matter (SIDM) in the gravothermal fluid formalism. We show that the thermal relaxation time, trt_r, of a SIDM halo with a central density and velocity dispersion of a typical dwarf galaxy is significantly shorter than its age. We find a self-similar solution for the evolution of a SIDM halo in the limit where the mean free path between collisions, λ\lambda, is everywhere longer than the gravitational scale height, HH. Typical halos formed in this long mean free path regime relax to a quasistationary gravothermal density profile characterized by a nearly homogeneous core and a power-law halo where ρr2.19\rho \propto r^{-2.19}. We solve the more general time-dependent problem and show that the contracting core evolves to sufficiently high density that λ\lambda inevitably becomes smaller than HH in the innermost region. The core undergoes secular collapse to a singular state (the ``gravothermal catastrophe'') in a time tcoll290trt_{coll} \approx 290 t_r, which is longer than the Hubble time for a typical dark matter-dominated galaxy core at the present epoch. Our model calculations are consistent with previous, more detailed, N-body simulations for SIDM, providing a simple physical interpretation of their results and extending them to higher spatial resolution and longer evolution times. At late times, mass loss from the contracting, dense inner core to the ambient halo is significantly moderated, so that the final mass of the inner core may be appreciable when it becomes relativistic and radially unstable to dynamical collapse to a black hole.Comment: ApJ in press (to appear in April), 12 pages. Extremely minor changes to agree with published versio

    The Jovian atmospheric window at 2.7 microns: A search for H2S

    Get PDF
    The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted

    Numerical studies of a one-dimensional 3-spin spin-glass model with long-range interactions

    Get PDF
    We study a p-spin spin-glass model to understand if the finite-temperature glass transition found in the mean-field regime of p-spin models, and used to model the behavior of structural glasses, persists in the non-mean-field regime. By using a 3-spin spin-glass model with long-range power-law diluted interactions we are able to continuously tune the (effective) space dimension via the exponent of the interactions. Monte Carlo simulations of the spin-glass susceptibility and the two-point finite-size correlation length show that deep in the non-mean-field regime the finite-temperature transition is lost, whereas this is not the case in the mean-field regime, in agreement with the prediction of Moore and Drossel [Phys. Rev. Lett. 89, 217202 (2002)] that 3-spin models are in the same universality class as an Ising spin glass in a magnetic field. However, slightly in the non-mean-field region, we find an apparent transition in the 3-spin model, in contrast to results for the Ising spin glass in a field. This may indicate that even larger sizes are needed to probe the asymptotic behavior in this region.Comment: 8 pages, 9 figures, 1 tabl

    A Relativistic Version of the Two-Level Atom in the Rest-Frame Instant Form of Dynamics

    Full text link
    We define a relativistic version of the two-level atom, in which an extended atom is replaced by a point particle carrying suitable Grassmann variables for the description of the two-level structure and of the electric dipole. After studying the isolated system "atom plus the electro-magnetic field" in the electric-dipole representation as a parametrized Minkowski theory, we give its restriction to the inertial rest frame and the explicit form of the Poincar\'e generators. After quantization we get a two-level atom with a spin 1/2 electric dipole and the relativistic generalization of the Hamiltonians of the Rabi and Jaynes-Cummings models.Comment: 23 page

    Velocity-resolved observations of water in Comet Halley

    Get PDF
    High resolution (lambda/delta lambda approx. = 3 x 10 to the 5th power) near-infrared observations of H2O emission from Comet Halley were acquired at the time of maximum post-perihelion geocentric Doppler shift. The observed widths and absolute positions of the H2O line profiles reveal characteristics of the molecular velocity field in the coma. These results support H2O outflow from a Sun-lit hemisphere or the entire nucleus, but not from a single, narrow jet emanating from the nucleus. The measured pre- and post-perihelion outflow velocities were 0.9 + or - 0.2 and 1.4 + or - 0.2 km/s, respectively. Temporal variations in the kinematic properties of the outflow were inferred from changes in the spectral line shapes. These results are consistent with the release of H2O into the coma from multiple jets

    NEW AND UPDATED RECORDS FOR AMPHIBIANS AND REPTILES IN MINNESOTA, USA

    Get PDF
    Following the publication of the revised edition of “Amphibians and Reptiles in Minnesota” by Moriarty and Hall (2014), we accessioned several new or updated records at the Bell Museum of Natural History (JFBM). Records include digital photographs (accession number preceded by “P”) and audio recordings (accession number preceded by “AUD”). In addition, a subset of these observations were accessioned in www.HerpMapper.org. HerpMapper accession numbers are preceded by “HM” and can be viewed online. Benjamin Lowe verified species determinations. Latitude and longitude coordinates are based on datum WGS 84
    corecore