775 research outputs found

    Comparison of forest attributes derived from two terrestrial lidar systems.

    Get PDF
    Abstract Terrestrial lidar (TLS) is an emerging technology for deriving forest attributes, including conventional inventory and canopy characterizations. However, little is known about the influence of scanner specifications on derived forest parameters. We compared two TLS systems at two sites in British Columbia. Common scanning benchmarks and identical algorithms were used to obtain estimates of tree diameter, position, and canopy characteristics. Visualization of range images and point clouds showed clear differences, even though both scanners were relatively high-resolution instruments. These translated into quantifiable differences in impulse penetration, characterization of stems and crowns far from the scan location, and gap fraction. Differences between scanners in estimates of effective plant area index were greater than differences between sites. Both scanners provided a detailed digital model of forest structure, and gross structural characterizations (including crown dimensions and position) were relatively robust; but comparison of canopy density metrics may require consideration of scanner attributes

    The development of a position-sensitive CZT detector with orthogonal co-planar anode strips

    Get PDF
    We report on the simulation, construction, and performance of prototype CdZnTe imaging detectors with orthogonal coplanar anode strips. These detectors employ a novel electrode geometry with non-collecting anode strips in one dimension and collecting anode pixels, interconnected in rows, in the orthogonal direction. These detectors retain the spectroscopic and detection efficiency advantages of single carrier (electron) sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N×N array of imaging pixels are with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8×8 unit cells (1×1×5 mm3)are compared to the simulations. Results of position and energy resolution measurements are presented and discussed

    Analog processing of signals from a CZT strip detector with orthogonal coplanar anodes

    Get PDF
    We present the requirements, design, and performance of an analog circuit for processing the non-collecting anode strip signals from a cadmium zinc telluride (CZT) strip detector with orthogonal coplanar anodes. Detector signal simulations and measurements with a prototype are used to define the range of signal characteristics as a function of location of the gamma interaction in the detector. The signals from the non- collecting anode strip electrodes are used to define two of the three spatial coordinates including the depth of interaction, the z dimension. Analog signal processing options are discussed. A circuit to process the signals from the non- collecting anode strips and extract from them the depth of interaction is described. The circuit employs a time-over- threshold (TOT) measurement. The performance of the detector prototype with a preliminary version of this circuit is presented, and future development work is outlined

    Progress in the study of CdZnTe strip detectors

    Get PDF
    We report new performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector under study as a prototype imaging spectrometer for astronomical x-ray and gamma-ray observations. The prototype is 1.5 mm thick with 375 micron strip pitch in both the x and y dimensions. Previously reported work included demonstrations of half-pitch spatial resolution (approximately 190 microns) and good energy resolution and spectral uniformity. Strip detector efficiency measurements have also been presented. A model that includes the photon interaction, carrier transport and the electronics was developed that qualitatively reproduced the measurements. The new studies include measurements of the CdZnTe transport properties for this prototype in an effort to resolve quantitative discrepancies between the measurements and the simulations. Measurements of charge signals produced by laser pulses and (alpha) -rays are used to determine these transport properties. These are then used in the model to predict gamma-ray efficiencies that are compared with the data. The imaging performance of the detector is studied by scanned laser and gamma beam spot measurements. The results support the model\u27s prediction of nearly linear sharing of the charge for interactions occurring in the region between electrodes. The potential for strip detectors with spatial resolution much finer than the strip pitch is demonstrated. A new design scheme for strip detectors is shortly discussed

    Three-dimensional imaging and detection efficiency performance of orthogonal coplanar CZT strip detectors

    Get PDF
    We report on recent three-dimensional imaging performance and detection efficiency measurements obtained with 5 mm thick prototype CdZnTe detectors fabricated with orthogonal coplanar anode strips. In previous work, we have shown that detectors fabricated using this design achieve both very good energy resolution and sub-millimeter spatial resolution with fewer electronic channels than are required for pixel detectors. As electron-only devices, like pixel detectors, coplanar anode strip detectors can be fabricated in the thickness required to be effective imagers for photons with energies in excess of 500 keV. Unlike conventional double-sided strip detectors, the coplanar anode strip detectors require segmented contacts and signal processing electronics on only one surface. The signals can be processed to measure the total energy deposit and the photon interaction location in three dimensions. The measurements reported here provide a quantitative assessment of the detection capabilities of orthogonal coplanar anode strip detectors

    Development of an orthogonal-stripe CdZnTe gamma radiation imaging spectrometer

    Get PDF
    We report performance measurements of a sub-millimeter resolution CdZnTe strip detector developed as a prototype for astronomical instruments operating with good efficiency in the 30-300 keV photon energy range. The prototype is a 1.4 mm thick, 64×64 contact stripe CdZnTe array of 0.375 mm pitch in both dimensions. Pulse height spectra were recorded in orthogonal-stripe coincidence mode which demonstrate room-temperature energy resolution \u3c10 keV (FWHM) for 122 keV photons with a peak-to-valley ratio \u3e5:1. Good response is also demonstrated at higher energies using a coplanar grid readout configuration. Spatial resolution capabilities finer than the stripe pitch are demonstrated. We present the image of a 133Ba source viewed through a collimator slit produced by a 4×4 stripe detector segment. Charge signals from electron and hole collecting contacts are also discussed

    Consumer behaviour in the waiting area

    Get PDF
    Objective of the study: To determine consumer behaviour in the pharmacy waiting area. Method: The applied methods for data-collection were direct observations. Three Dutch community pharmacies were selected for the study. The topics in the observation list were based on available services at each waiting area (brochures, books, illuminated new trailer, children’s play area, etc.). Per patient each activity was registered, and at each pharmacy the behaviour was studied for 2 weeks. Results: Most patients only waited during the waiting time at the studied pharmacies. Few consumers obtained written information during their wait. Conclusion: The waiting area may have latent possibilities to expand the information function of the pharmacy and combine this with other activities that distract the consumer from the wait. Transdisciplinary research, combining knowledge from pharmacy practice research with consumer research, has been a useful approach to add information on queueing behaviour of consumers

    CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report γ-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for γ-ray measurements in the range of 20-600 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripe CdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals. We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Performance of CdZnTe strip detectors as sub-millimeter resolution imaging gamma radiation spectrometers

    Get PDF
    We report & gamma;-ray detection performance measurements and computer simulations of a sub-millimeter pitch CdZnTe strip detector. The detector is a prototype for & gamma;-ray astronomy measurements in the range of 20-200 keV. The prototype is a 1.5 mm thick, 64×64 orthogonal stripeCdZnTe detector of 0.375 mm pitch in both dimensions, with approximately one square inch of sensitive area. Using discrete laboratory electronics to process signals from an 8×8 stripe region of the prototype we measured good spectroscopic uniformity and sub-pitch (~0.2 mm) spatial resolution in both x and y dimensions. We present below measurements of the spatial uniformity, relative timing and pulse height of the anode and cathode signals, and the photon detection efficiency. We also present a technique for determining the location of the event in the third dimension (depth). We simulated the photon interactions and signal generation in the strip detector and the test electronics and we compare these results with the data. The data indicate that the cathode signal-as well as the anode signal-arises more strongly from the conduction electrons rather than the holes

    Balloon-borne coded aperture telescope for arc-minute angular resolution at hard x-ray energies

    Get PDF
    We are working on the development of a new balloon-borne telescope, MARGIE (minute-of-arc resolution gamma ray imaging experiment). It will be a coded aperture telescope designed to image hard x-rays (in various configurations) over the 20 - 600 keV range with an angular resolution approaching one arc minute. MARGIE will use one (or both) of two different detection plane technologies, each of which is capable of providing event locations with sub-mm accuracies. One such technology involves the use of cadmium zinc telluride (CZT) strip detectors. We have successfully completed a series of laboratory measurements using a prototype CZT detector with 375 micron pitch. Spatial location accuracies of better than 375 microns have been demonstrated. A second type of detection plane would be based on CsI microfiber arrays coupled to a large area silicon CCD readout array. This approach would provide spatial resolutions comparable to that of the CZT prototype. In one possible configuration, the coded mask would be 0.5 mm thick tungsten, with 0.5 mm pixels at a distance of 1.5 m from the central detector giving an angular resolution of 1 arc-minute and a fully coded field of view of 12 degrees. We review the capabilities of the MARGIE telescope and report on the status of our development efforts and our plans for a first balloon flight
    corecore