16,277 research outputs found
Evidence of a glass transition in a 10-state non-mean-field Potts glass
Potts glasses are prototype models that have been used to understand the
structural glass transition. However, in finite space dimensions a glass
transition remains to be detected in the 10-state Potts glass. Using a
one-dimensional model with long-range power-law interactions we present
evidence that a glass transition below the upper critical dimension can exist
for short-range systems at low enough temperatures. Gaining insights into the
structural glass transition for short-range systems using spin models is thus
potentially possible, yet difficult.Comment: 4 pages, 1 table, 2 figure
Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid
We present a hybrid lattice Boltzmann algorithm for the simulation of flow
glass-forming fluids, characterized by slow structural relaxation, at the level
of the Navier-Stokes equation. The fluid is described in terms of a nonlinear
integral constitutive equation, relating the stress tensor locally to the
history of flow. As an application, we present results for an integral
nonlinear Maxwell model that combines the effects of (linear) viscoelasticity
and (nonlinear) shear thinning. We discuss the transient dynamics of
velocities, shear stresses, and normal stress differences in planar
pressure-driven channel flow, after switching on (startup) and off (cessation)
of the driving pressure. This transient dynamics depends nontrivially on the
channel width due to an interplay between hydrodynamic momentum diffusion and
slow structural relaxation
Thermal and hydrodynamic effects in the ordering of lamellar fluids
Phase separation in a complex fluid with lamellar order has been studied in
the case of cold thermal fronts propagating diffusively from external walls.
The velocity hydrodynamic modes are taken into account by coupling the
convection-diffusion equation for the order parameter to a generalised
Navier-Stokes equation. The dynamical equations are simulated by implementing a
hybrid method based on a lattice Boltzmann algorithm coupled to finite
difference schemes. Simulations show that the ordering process occurs with
morphologies depending on the speed of the thermal fronts or, equivalently, on
the value of the thermal conductivity {\xi}. At large value of {\xi}, as in
instantaneous quenching, the system is frozen in entangled configurations at
high viscosity while consists of grains with well ordered lamellae at low
viscosity. By decreasing the value of {\xi}, a regime with very ordered
lamellae parallel to the thermal fronts is found. At very low values of {\xi}
the preferred orientation is perpendicular to the walls in d = 2, while
perpendicular order is lost moving far from the walls in d = 3.Comment: 8 pages, 3 figures. Accepted for publication in Phil. Trans. of Royal
Soc, Ser
Supercell studies of the Fermi surface changes in the electron-doped superconductor LaFeAsOF
We study the changes in the Fermi surface with electron doping in the
LaFeAsOF superconductors with density-functional supercell
calculations using the linearized augmented planewave (LAPW) method. The
supercell calculations with explicit F substitution are compared with those
obtained from the virtual crystal approximation (VCA) and from a simple rigid
band shift. We find significant differences between the supercell results and
those obtained from the rigid-band shift with electron doping, although quite
remarkably the supercell results are in good agreement with the virtual crystal
approximation (VCA) where the nuclear charges of the O atoms are slightly
increased to mimic the addition of the extra electrons. With electron doping,
the two cylindrical hole pockets along shrink in size, and the third
hole pocket around disappears for an electron doping concentration in
excess of about 7-8%, while the two elliptical electron cylinders along
expand in size. The spin-orbit coupling does not affect the Fermi surface much
except to somewhat reduce the size of the third hole pocket in the undoped
case. We find that with the addition of the electrons the antiferromagnetic
state becomes energetically less stable as compared to the nonmagnetic state,
indicating that the electron doping may provide an extra degree of stability to
the formation of the superconducting ground state.Comment: 7 pages, 8 figure
Duality in Shearing Rheology Near the Athermal Jamming Transition
We consider the rheology of soft-core frictionless disks in two dimensions in
the neighborhood of the athermal jamming transition. From numerical simulations
of bidisperse, overdamped, particles, we argue that the divergence of the
viscosity below jamming is characteristic of the hard-core limit, independent
of the particular soft-core interaction. We develop a mapping from soft-core to
hard-core particles that recovers all the critical behavior found in earlier
scaling analyses. Using this mapping we derive a duality relation that gives
the exponent of the non-linear Herschel-Bulkley rheology above jamming in terms
of the exponent of the diverging viscosity below jamming.Comment: 5 pages, 4 figures. Manuscript revisions: new title, additional text
concerning connections to experiment, revised Fig. 4, other minor changes and
clarifications in text. Conclusions remain essentially unchanged. Accepted
for publication in Phys. Rev. Let
High temperature measuring device
Ultrasonic pulse technique for measuring average gas temperature in nuclear rocket engine - sound propagation and environmental studie
Massive stars and globular cluster formation
We first present chemodynamical simulations to investigate how stellar winds
of massive stars influence early dynamical and chemical evolution of forming
globular clusters (GCs). In our numerical models, GCs form in
turbulent,high-density giant molecular clouds (GMCs), which are embedded in a
massive dark matter halo at high redshifts. We show how high-density, compact
stellar systems are formed from GMCs influenced both by physical processes
associated with star formation and by tidal fields of their host halos. We also
show that chemical pollution of GC-forming GMCs by stellar winds from massive
stars can result in star-to-star abundance inhomogeneities among light elements
(e.g., C, N, and O) of stars in GCs. The present model with a canonical initial
mass function (IMF) also shows a C-N anticorrelation that stars with smaller
[C/Fe] have larger [N/Fe] in a GC. Although these results imply that
``self-pollution'' of GC-forming GMCs by stellar winds from massive stars can
cause abundance inhomogeneities of GCs, the present models with different
parameters and canonical IMFs can not show N-rich stars with [N/Fe] ~ 0.8
observed in some GCs (e.g., NGC 6752). We discuss this apparent failure in the
context of massive star formation preceding low-mass one within GC-forming GMCs
(``bimodal star formation scenario''). We also show that although almost all
stars (~97%) show normal He abundances (Y) of ~0.24 some stars later formed in
GMCs can have Y as high as ~0.3 in some models. The number fraction of He-rich
stars with Y >0.26 is however found to be small (~10^-3) for most models.Comment: 10 pages, 8 figures, accepted by Ap
The LISA Gravitational Wave Foreground: A Study of Double White Dwarfs
Double white dwarfs are expected to be a source of confusion-limited noise
for the future gravitational wave observatory LISA. In a specific frequency
range, this 'foreground noise' is predicted to rise above the instrumental
noise and hinder the detection of other types of signals, e.g., gravitational
waves arising from stellar mass objects inspiraling into massive black holes.
In many previous studies only detached populations of compact object binaries
have been considered in estimating the LISA gravitational wave foreground
signal. Here, we investigate the influence of compact object detached and
Roche-Lobe Overflow Galactic binaries on the shape and strength of the LISA
signal. Since >99% of remnant binaries which have orbital periods within the
LISA sensitivity range are white dwarf binaries, we consider only these
binaries when calculating the LISA signal. We find that the contribution of
RLOF binaries to the foreground noise is negligible at low frequencies, but
becomes significant at higher frequencies, pushing the frequency at which the
foreground noise drops below the instrumental noise to >6 mHz. We find that it
is important to consider the population of mass transferring binaries in order
to obtain an accurate assessment of the foreground noise on the LISA data
stream. However, we estimate that there still exists a sizeable number (~11300)
of Galactic double white dwarf binaries which will have a signal-to-noise ratio
>5, and thus will be potentially resolvable with LISA. We present the LISA
gravitational wave signal from the Galactic population of white dwarf binaries,
show the most important formation channels contributing to the LISA disc and
bulge populations and discuss the implications of these new findings.Comment: ApJ accepted. 28 pages, 11 figures (low resolution), 5 tables, some
new references and changed content since last astro-ph versio
Wetting transitions in polydisperse fluids
The properties of the coexisting bulk gas and liquid phases of a polydisperse
fluid depend not only on the prevailing temperature, but also on the overall
parent density. As a result, a polydisperse fluid near a wall will exhibit
density-driven wetting transitions inside the coexistence region. We propose a
likely topology for the wetting phase diagram, which we test using Monte Carlo
simulations of a model polydisperse fluid at an attractive wall, tracing the
wetting line inside the cloud curve and identifying the relationship to
prewetting.Comment: 4 Pages, 4 figures. Accepted for publication in Physical Review
Letter
- …