4,065 research outputs found

    Modular frames for Hilbert C*-modules and symmetric approximation of frames

    Full text link
    We give a comprehensive introduction to a general modular frame construction in Hilbert C*-modules and to related modular operators on them. The Hilbert space situation appears as a special case. The reported investigations rely on the idea of geometric dilation to standard Hilbert C*-modulesover unital C*-algebras that admit an orthonormal Riesz basis. Interrelations and applications to classical linear frame theory are indicated. As an application we describe the nature of families of operators {S_i} such that SUM_i S*_iS_i=id_H, where H is a Hilbert space. Resorting to frames in Hilbert spaces we discuss some measures for pairs of frames to be close to one another. Most of the measures are expressed in terms of norm-distances of different kinds of frame operators. In particular, the existence and uniqueness of the closest (normalized) tight frame to a given frame is investigated. For Riesz bases with certain restrictions the set of closetst tight frames often contains a multiple of its symmetric orthogonalization (i.e. L\"owdin orthogonalization).Comment: SPIE's Annual Meeting, Session 4119: Wavelets in Signal and Image Processing; San Diego, CA, U.S.A., July 30 - August 4, 2000. to appear in: Proceedings of SPIE v. 4119(2000), 12 p

    Irreducible wavelet representations and ergodic automorphisms on solenoids

    Full text link
    We focus on the irreducibility of wavelet representations. We present some connections between the following notions: covariant wavelet representations, ergodic shifts on solenoids, fixed points of transfer (Ruelle) operators and solutions of refinement equations. We investigate the irreducibility of the wavelet representations, in particular the representation associated to the Cantor set, introduced in \cite{DuJo06b}, and we present several equivalent formulations of the problem

    Dilations of frames, operator valued measures and bounded linear maps

    Full text link
    We will give an outline of the main results in our recent AMS Memoir, and include some new results, exposition and open problems. In that memoir we developed a general dilation theory for operator valued measures acting on Banach spaces where operator-valued measures (or maps) are not necessarily completely bounded. The main results state that any operator-valued measure, not necessarily completely bounded, always has a dilation to a projection-valued measure acting on a Banach space, and every bounded linear map, again not necessarily completely bounded, on a Banach algebra has a bounded homomorphism dilation acting on a Banach space. Here the dilation space often needs to be a Banach space even if the underlying space is a Hilbert space, and the projections are idempotents that are not necessarily self-adjoint. These results lead to some new connections between frame theory and operator algebras, and some of them can be considered as part of the investigation about "noncommutative" frame theory.Comment: Contemporary Mathematics, 21 pages. arXiv admin note: substantial text overlap with arXiv:1110.583

    Dilations for Systems of Imprimitivity acting on Banach Spaces

    Full text link
    Motivated by a general dilation theory for operator-valued measures, framings and bounded linear maps on operator algebras, we consider the dilation theory of the above objects with special structures. We show that every operator-valued system of imprimitivity has a dilation to a probability spectral system of imprimitivity acting on a Banach space. This completely generalizes a well-kown result which states that every frame representation of a countable group on a Hilbert space is unitarily equivalent to a subrepresentation of the left regular representation of the group. The dilated space in general can not be taken as a Hilbert space. However, it can be taken as a Hilbert space for positive operator valued systems of imprimitivity. We also prove that isometric group representation induced framings on a Banach space can be dilated to unconditional bases with the same structure for a larger Banach space This extends several known results on the dilations of frames induced by unitary group representations on Hilbert spaces.Comment: 21 page

    Framings and dilations

    Full text link
    The notion of framings, recently emerging in P. G. Casazza, D. Han, and D. R. Larson, Frames for Banach spaces, in {\em The functional and harmonic analysis of wavelets and frames} (San Antonio, TX, 1999), {\em Contemp. Math}. {\bf 247} (1999), 149-182 as generalization of the reconstraction formula generated by pairs of dual frames, is in this note extended substantially. This calls on refining the basic dilation results which still being in the flavor of {\em th\'eor\`eme principal} of B. Sz-Nagy go much beyond it.Comment: The final version will appear in Acta Sci. Math (Szeged
    corecore