610 research outputs found

    The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure

    Get PDF
    In this paper we present the results of a systematic investigation of an entire population of starless dust cores within a single molecular cloud. Analysis of extinction data shows the cores to be dense objects characterized by a narrow range of density. Analysis of C18O and NH3 molecular-line observations reveals very narrow lines. The non-thermal velocity dispersions measured in both these tracers are found to be subsonic for the large majority of the cores and show no correlation with core mass (or size). Thermal pressure is thus the dominate source of internal gas pressure and support for most of the core population. The total internal gas pressures of the cores are found to be roughly independent of core mass over the entire range of the core mass function (CMF) indicating that the cores are in pressure equilibrium with an external source of pressure. This external pressure is most likely provided by the weight of the surrounding Pipe cloud within which the cores are embedded. Most of the cores appear to be pressure confined, gravitationally unbound entities whose nature, structure and future evolution are determined by only a few physical factors which include self-gravity, the fundamental processes of thermal physics and the simple requirement of pressure equilibrium with the surrounding environment. The observed core properties likely constitute the initial conditions for star formation in dense gas. The entire core population is found to be characterized by a single critical Bonnor-Ebert mass. This mass coincides with the characteristic mass of the Pipe CMF indicating that most cores formed in the cloud are near critical stability. This suggests that the mass function of cores (and the IMF) has its origin in the physical process of thermal fragmentation in a pressurized medium.Comment: To appear in the Astrophysical Journa

    Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models

    Get PDF
    We use 3D numerical MHD simulations to follow the evolution of cold, turbulent, gaseous systems with parameters representing GMC conditions. We study three cloud simulations with varying mean magnetic fields, but identical initial velocity fields. We show that turbulent energy is reduced by a factor two after 0.4-0.8 flow crossing times (2-4 Myr), and that the magnetically supercritical cloud models collapse after ~6 Myr, while the subcritical cloud does not collapse. We compare density, velocity, and magnetic field structure in three sets of snapshots with matched Mach numbers. The volume and column densities are both log-normally distributed, with mean volume density a factor 3-6 times the unperturbed value, but mean column density only a factor 1.1-1.4 times the unperturbed value. We use a binning algorithm to investigate the dependence of kinetic quantities on spatial scale for regions of column density contrast (ROCs). The average velocity dispersion for the ROCs is only weakly correlated with scale, similar to the mean size-linewidth relation for clumps within GMCs. ROCs are often superpositions of spatially unconnected regions that cannot easily be separated using velocity information; the same difficulty may affect observed GMC clumps. We analyze magnetic field structure, and show that in the high density regime, total magnetic field strengths increase with density with logarithmic slope 1/3 -2/3. Mean line-of-sight magnetic field strengths vary widely across a projected cloud, and do not correlate with column density. We compute simulated interstellar polarization maps at varying orientations, and determine that the Chandrasekhar-Fermi formula multiplied by a factor ~0.5 yields a good estimate of the plane-of sky magnetic field strength provided the dispersion in polarization angles is < 25 degrees.Comment: 56 pages, 25 figures; Ap.J., accepte

    Shapes of Molecular Cloud Cores and the Filamentary Mode of Star Formation

    Full text link
    Using recent dust continuum data, we generate the intrinsic ellipticity distribution of dense, starless molecular cloud cores. Under the hypothesis that the cores are all either oblate or prolate randomly-oriented spheroids, we show that a satisfactory fit to observations can be obtained with a gaussian prolate distribution having a mean intrinsic axis ratio of 0.54. Further, we show that correlations exist between the apparent axis ratio and both the peak intensity and total flux density of emission from the cores, the sign of which again favours the prolate hypothesis. The latter result shows that the mass of a given core depends on its intrinsic ellipticity. Monte Carlo simulations are performed to find the best-fit power law of this dependence. Finally, we show how these results are consistent with an evolutionary scenario leading from filamentary parent clouds to increasingly massive, condensed, and roughly spherical embedded cores.Comment: 16 pages, incl. 11 Postscript figures. Accepted by Ap

    Nonlinear Outcome of Gravitational Instability in Disks with Realistic Cooling

    Full text link
    We consider the nonlinear outcome of gravitational instability in optically thick disks with a realistic cooling function. We use a numerical model that is local, razor-thin, and unmagnetized. External illumination is ignored. Cooling is calculated from a one-zone model using analytic fits to low temperature Rosseland mean opacities. The model has two parameters: the initial surface density Sigma_0 and the rotation frequency Omega. We survey the parameter space and find: (1) The disk fragments when t_c,eff Omega = 1, where t_c,eff is an effective cooling time defined as the average internal energy of the model divided by the average cooling rate. This is consistent with earlier results that used a simplified cooling function. (2) The initial cooling time t_c0 or a uniform disk with Q = 1 can differ by orders of magnitude from t_c,eff in the nonlinear outcome. The difference is caused by sharp variations in the opacity with temperature. The condition t_c0 Omega = 1 therefore does not necessarily indicate where fragmentation will occur. (3) The largest difference between t_c,eff and t_c0 is near the opacity gap, where dust is absent and hydrogen is largely molecular. (4) In the limit of strong illumination the disk is isothermal; we find that an isothermal version of our model fragments for Q < 1.4. Finally, we discuss some physical processes not included in our model, and find that most are likely to make disks more susceptible to fragmentation. We conclude that disks with t_c,eff Omega < 1 do not exist.Comment: 30 pages, 12 figure

    Envelope Structure of Starless Core L694-2 Derived from a Near-Infrared Extinction Map

    Full text link
    We present a near-infrared extinction study of the dark globule L694-2, a starless core that shows strong evidence for inward motions in molecular line profiles. The J,H, and K band data were taken using the European Southern Observatory New Technology Telescope. The best fit simple spherical power law model has index p=2.6 +/- 0.2, over the 0.036--0.1 pc range in radius sampled in extinction. This power law slope is steeper than the value of p=2 for a singular isothermal sphere, the initial condition of the inside-out model for protostellar collapse. Including an additional extinction component along the line of sight further steepens the inferred profile. Fitting a Bonnor-Ebert sphere results in a super-critical value of the dimensionless radius xi_max=25 +/- 3. The unstable configuration of material may be related to the observed inward motions. The Bonnor-Ebert model matches the shape of the observed profile, but significantly underestimates the amount of extinction (by a factor of ~4). This discrepancy in normalization has also been found for the nearby protostellar core B335 (Harvey et al. 2001). A cylindrical density model with scale height H=0.0164+/- 0.002 pc viewed at a small inclination to the cylinder axis provides an equally good radial profile as a power law model, and reproduces the asymmetry of the core remarkably well. In addition, this model provides a basis for understanding the discrepancy in the normalization of the Bonnor-Ebert model, namely that L694-2 has prolate structure, with the full extent (mass) of the core being missed by assuming symmetry between the profiles in the plane of the sky and along the line-of-sight. If the core is sufficiently magnetized then fragmentation may be avoided, and later evolution might produce a protostar similar to B335.Comment: 38 pages, 7 figures, accepted to Astrophysical Journa

    A Legislative Proposal for Improving Materials Policymaking: Impacts and Issues

    Get PDF
    The materials data, forecasting, and analysis system is very important to the future materials policies of this country. Adequate, timely, and reliable data, forecasts, and analyses are not sufficient for effective policy to solve complicated national materials problems, but they are necessary for improving the public policymaking process. Under a contract from Congress’ Office of Technology Assessment, the present authors reviewed the existing repositories of materials information and the possibilities for improvement. We interviewed policymakers in government, private industry, and nonprofit organizations. In this Article we describe our principal recommendation resulting from that research, a proposal for a new Bureau of Materials Statistics and Forecasting, and analyze its probable effects on government, free enterprise, and the general public

    The nature of the dense core population in the pipe nebula: core and cloud kinematics from C18O observations

    Full text link
    We present molecular-line observations of 94 dark cloud cores identified in the Pipe nebula through near-IR extinction mapping. Using the Arizona Radio Observatory 12m telescope, we obtained spectra of these cores in the J=1-0 transition of C18O. We use the measured core parameters, i.e., antenna temperature, linewidth, radial velocity, radius and mass, to explore the internal kinematics of these cores as well as their radial motions through the larger molecular cloud. We find that the vast majority of the dark extinction cores are true cloud cores rather than the superposition of unrelated filaments. While we identify no significant correlations between the core's internal gas motions and the cores' other physical parameters, we identify spatially correlated radial velocity variations that outline two main kinematic components of the cloud. The largest is a 15pc long filament that is surprisingly narrow both in spatial dimensions and in radial velocity. Beginning in the Stem of the Pipe, this filament displays uniformly small C18O linewidths (dv~0.4kms-1) as well as core to core motions only slightly in excess of the gas sound speed. The second component outlines what appears to be part of a large (2pc; 1000 solar mass) ring-like structure. Cores associated with this component display both larger linewidths and core to core motions than in the main cloud. The Pipe Molecular Ring may represent a primordial structure related to the formation of this cloud.Comment: Accepted to ApJ. 14 pages, 11 figures. Complete table at end of documen

    The Mass-Metallicity Relation at z~2

    Full text link
    We use a sample of 87 rest-frame UV-selected star-forming galaxies with mean spectroscopic redshift z=2.26 to study the correlation between metallicity and stellar mass at high redshift. Using stellar masses determined from SED fitting to 0.3-8 micron photometry, we divide the sample into six bins in stellar mass, and construct six composite H-alpha+[NII] spectra from all of the objects in each bin. We estimate the mean oxygen abundance in each bin from the [NII]/H-alpha ratio, and find a monotonic increase in metallicity with increasing stellar mass, from 12+log(O/H) = 2.7e9 Msun to 12+log(O/H) = 8.6 for galaxies with = 1e11 Msun. We use the empirical relation between star formation rate density and gas density to estimate the gas fractions of the galaxies, finding an increase in gas fraction with decreasing stellar mass. These gas fractions combined with the observed metallicities allow the estimation of the effective yield y_eff as a function of stellar mass; in constrast to observations in the local universe which show a decrease in y_eff with decreasing baryonic mass, we find a slight increase. Such a variation of metallicity with gas fraction is best fit by a model with supersolar yield and an outflow rate ~4 times higher than the star formation rate. We conclude that the mass-metallicity relation at high redshift is driven by the increase in metallicity as the gas fraction decreases through star formation, and is likely modulated by metal loss from strong outflows in galaxies of all masses. There is no evidence for preferential loss of metals from low mass galaxies as has been suggested in the local universe. [Abridged]Comment: 18 pages, 9 figures, 2 tables; accepted for publication in Ap

    Evaluating Varieties of Alfalfa and Tall Fescue for Tolerance to Over-Grazing by Cattle

    Get PDF
    Cultivars of alfalfa (Medicago sativa L.) and tall fescue (Festuca arundinacea Schreb.) were seeded in small (1.5 m x 4.6 m) plots and harvested for estimating yield the following spring. Plots were then grazed by cattle continuously for the remainder of the season so as to keep stand heights at 7.5 cm or less. This procedure was repeated for one or two more grazing seasons, depending on stand survival. Stands were visually rated for stand in the fall and spring. Marked differences in grazing tolerance were observed among alfalfa cultivars, following closely the commercial designations as grazing-type or hay-type alfalfa. Some cultivars of endophyte-free tall fescue were as grazing tolerant as endophyte-infected Kentucky 31 tall fescue

    Geographic variation in phenotypic divergence between two hybridizing field cricket species

    Get PDF
    Patterns of morphological divergence across species' ranges can provide insight into local adaptation and speciation. In this study, we compared phenotypic divergence among 4,221 crickets from 337 populations of two closely related species of field cricket, Gryllus firmus and G. pennsylvanicus, and their hybrids. We found that these species differ across their geographic range in key morphological traits, such as body size and ovipositor length, and we directly compared phenotype with genotype for a subset of crickets to demonstrate nuclear genetic introgression, phenotypic intermediacy of hybrids, and essentially unidirectional mitochondrial introgression. We discuss how these morphological traits relate to life history differences between the two species. Our comparisons across geographic areas support prior research suggesting that cryptic variation within G. firmus may represent different species. Our study highlights how variable morphology can be across wide-ranging species and the importance of studying reproductive barriers in more than one or two transects of a hybrid zone
    • …
    corecore