872 research outputs found

    Helsinki VideoMEG Project : Augmenting magnetoencephalography with synchronized video recordings

    Get PDF
    The primary goal of the Helsinki VideoMEG Project is to enable magnetoencephalography (MEG) practitioners to record and analyze the video of the subject during an MEG experiment jointly with the MEG data. The project provides: Hardware assembly instructions and software for setting up video and audio recordings of the participant synchronized to MEG data acquisition. Basic software tools for analyzing video and audio together with the MEG data. The resulting setup allows reliable recording of video and audio from the subject in various real-world usage scenarios. The Helsinki VideoMEG Project allowed successful establishment of video-MEG facilities in four different MEG laboratories in Finland, Sweden and the United States.Peer reviewe

    A Comprehensive Measure of the Costs of Caring For a Parent: Differences According to Functional Status

    Get PDF
    Providing unpaid care for an older parent has costs that go well beyond a caregiver’s lost wages. A new estimate suggests that the median direct and indirect costs of caregiving are 180,000overtwoyears,aboutthesameasfull−timeinstitutionalcare.Thisestimateaccountsforlostearningsaswellasnon−tangiblefactors,suchaslostleisuretimeandchangestothecaregiver’swell−being.Itsuggeststhatinformalcarecostcaregiversatleast180,000 over two years, about the same as full-time institutional care. This estimate accounts for lost earnings as well as non-tangible factors, such as lost leisure time and changes to the caregiver’s well-being. It suggests that informal care cost caregivers at least 277 billion in 2011, which is 20 percent higher than estimates that only consider lost wages

    Development and Validation of eRADAR: A Tool Using EHR Data to Detect Unrecognized Dementia.

    Get PDF
    ObjectivesEarly recognition of dementia would allow patients and their families to receive care earlier in the disease process, potentially improving care management and patient outcomes, yet nearly half of patients with dementia are undiagnosed. Our aim was to develop and validate an electronic health record (EHR)-based tool to help detect patients with unrecognized dementia (EHR Risk of Alzheimer's and Dementia Assessment Rule [eRADAR]).DesignRetrospective cohort study.SettingKaiser Permanente Washington (KPWA), an integrated healthcare delivery system.ParticipantsA total of 16 665 visits among 4330 participants in the Adult Changes in Thought (ACT) study, who undergo a comprehensive process to detect and diagnose dementia every 2 years and have linked KPWA EHR data, divided into development (70%) and validation (30%) samples.MeasurementsEHR predictors included demographics, medical diagnoses, vital signs, healthcare utilization, and medications within the previous 2 years. Unrecognized dementia was defined as detection in ACT before documentation in the KPWA EHR (ie, lack of dementia or memory loss diagnosis codes or dementia medication fills).ResultsOverall, 1015 ACT visits resulted in a diagnosis of incident dementia, of which 498 (49%) were unrecognized in the KPWA EHR. The final 31-predictor model included markers of dementia-related symptoms (eg, psychosis diagnoses, antidepressant fills), healthcare utilization pattern (eg, emergency department visits), and dementia risk factors (eg, cerebrovascular disease, diabetes). Discrimination was good in the development (C statistic = .78; 95% confidence interval [CI] = .76-.81) and validation (C statistic = .81; 95% CI = .78-.84) samples, and calibration was good based on plots of predicted vs observed risk. If patients with scores in the top 5% were flagged for additional evaluation, we estimate that 1 in 6 would have dementia.ConclusionThe eRADAR tool uses existing EHR data to detect patients with good accuracy who may have unrecognized dementia. J Am Geriatr Soc 68:103-111, 2019

    Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    Get PDF
    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility with both paraffin and RDX, the mixture will be combined with the melted paraffin. With the melting point of the paraffin far below the decomposition temperature of the RDX, the solvent will be boiled off, leaving the crystallized RDX embedded in the paraffin. At low percentages of RDX additive and with crystallized RDX surrounded by paraffin, the fuel grains will remain inert, maintaining a key benefit of hybrids in the safety of the solid fuel

    Five-Year Cost of Dementia: Medicare

    Get PDF
    About 5.5 million older adults are living with dementia, a chronic, progressive disease characterized by severe cognitive decline. This number will likely grow significantly as the U.S. population ages, which has cost implications for the Medicare program. A full accounting of these additional expenses will help policymakers plan for them in their Medicare budgets. In this study, Norma Coe and colleagues examined survival and Medicare expenditures in older adults with and without dementia to estimate dementia’s incremental costs to Medicare in the five years after diagnosis

    Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    Get PDF
    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure Combustion Lab
    • …
    corecore