24,103 research outputs found
Pulse-height defect due to electron interaction in dead layers of Ge/Li/ gamma-ray detectors
Study shows the pulse-height degradation of gamma ray spectra in germanium/lithium detectors to be due to electron interaction in the dead layers that exist in all semiconductor detectors. A pulse shape discrimination technique identifies and eliminates these defective pulses
CDM, Feedback and the Hubble Sequence
We have performed TreeSPH simulations of galaxy formation in a standard LCDM
cosmology, including effects of star formation, energetic stellar feedback
processes and a meta-galactic UV field, and obtain a mix of disk, lenticular
and elliptical galaxies. The disk galaxies are deficient in angular momentum by
only about a factor of two compared to observed disk galaxies. The stellar
disks have approximately exponential surface density profiles, and those of the
bulges range from exponential to r^{1/4}, as observed. The bulge-to-disk ratios
of the disk galaxies are consistent with observations and likewise are their
integrated B-V colours, which have been calculated using stellar population
synthesis techniques. Furthermore, we can match the observed I-band
Tully-Fisher (TF) relation, provided that the mass-to-light ratio of disk
galaxies, (M/L_I), is about 0.8. The ellipticals and lenticulars have
approximately r^{1/4} stellar surface density profiles, are dominated by
non-disklike kinematics and flattened due to non-isotropic stellar velocity
distributions, again consistent with observations.Comment: 6 pages, incl. 4 figs. To appear in the proceedings of the
EuroConference "The Evolution of Galaxies: II - Basic Building Blocks", Ile
de La Reunion (France), 16-21 October 2001 (Slightly updated version). A much
more comprehensive paper about this work with links to pictures of some of
the galaxies can be found at http://babbage.sissa.it/abs/astro-ph/020436
Use of the VAD technique and measurements of momentum flux in the stratosphere at Aercibo, part 4.3A
The Arecibo 430-MHz radar was used in the velocity-azimuth display (VAD) mode to obtain radial velocity measurements at 16 azimuth directions from which the three-dimensional wind field and momentum flux can be calculated. The radar was operated on a nearly continuous basis for a seven-day period in May of 1982 and the elapsed time between start and finish of a VAD scan was approximately 35 minutes. Radial velocities were measured in the upper troposphere and lower stratosphere (6-24 km) with at height resolution of 150 meters at a zenith angle of 15 deg. Vertical and horizontal velocities are calculated from the sums and differences, respectively, of radial velocity pairs, i.e., at azimuth directions AZ and AZ + 180 degrees. Momentum flux at a particular azimuth is calculated by taking the difference between the square of radial velocities at AZ and AZ + 180 degrees. It should be noted that measurements of radial velocity pairs are not simultaneous but are time delayed by approximately 15-25 minutes. This period, the time required to rotate the antenna feed and take measurements at AZ and AZ + 180 deg, effectively limits sampling of velocities and momentum fluxes to longer period gravity waves and planetary waves
A dynamical and kinematical model of the Galactic stellar halo and possible implications for galaxy formation scenarios
We re-analyse the kinematics of the system of blue horizontal branch field
(BHBF) stars in the Galactic halo (in particular the outer halo), fitting the
kinematics with the model of radial and tangential velocity dispersions in the
halo as a function of galactocentric distance r proposed by Sommer-Larsen,
Flynn & Christensen (1994), using a much larger sample (almost 700) of BHBF
stars. The basic result is that the character of the stellar halo velocity
ellipsoid changes markedly from radial anisotropy at the sun to tangential
anisotropy in the outer parts of the Galactic halo (r greater than approx 20
kpc). Specifically, the radial component of the stellar halo's velocity
ellipsoid decreases fairly rapidly beyond the solar circle, from approx 140 +/-
10 km/s at the sun, to an asymptotic value of 89 +/- 19 km/s at large r. The
rapid decrease in the radial velocity dispersion is matched by an increase in
the tangential velocity dispersion, with increasing r.
Our results may indicate that the Galaxy formed hierarchically (partly or
fully) through merging of smaller subsystems - the 'bottom-up' galaxy formation
scenario, which for quite a while has been favoured by most theorists and
recently also has been given some observational credibility by HST observations
of a potential group of small galaxies, at high redshift, possibly in the
process of merging to a larger galaxy (Pascarelle et al 1996).Comment: Latex, 16 pages. 2 postscript figures. Submitted to the Astrophysical
Journal. also available at http://astro.utu.fi/~cflynn/outerhalo.htm
High resolution Ge/Li/ spectrometer reduces rate-dependent distortions at high counting rates
Modified spectrometer system with a low-noise preamplifier reduces rate-dependent distortions at high counting rates, 25,000 counts per second. Pole-zero cancellation minimizes pulse undershoots due to multiple time constants, baseline restoration improves resolution and prevents spectral shifts
- …