17,115 research outputs found
Letters between C. Larsen and William Kerr\u27s secretary
Letters concerning a position in the modern languages department at Utah Agricultural College
Instantaneous Pair Theory for High-Frequency Vibrational Energy Relaxation in Fluids
Notwithstanding the long and distinguished history of studies of vibrational
energy relaxation, exactly how it is that high frequency vibrations manage to
relax in a liquid remains somewhat of a mystery. Both experimental and
theoretical approaches seem to say that there is a natural frequency range
associated with intermolecular motions in liquids, typically spanning no more
than a few hundred cm^{-1}. Landau-Teller-like theories explain how a solvent
can absorb any vibrational energy within this "band", but how is it that
molecules can rid themselves of superfluous vibrational energies significantly
in excess of these values? We develop a theory for such processes based on the
idea that the crucial liquid motions are those that most rapidly modulate the
force on the vibrating coordinate -- and that by far the most important of
these motions are those involving what we have called the mutual nearest
neighbors of the vibrating solute. Specifically, we suggest that whenever there
is a single solvent molecule sufficiently close to the solute that the solvent
and solute are each other's nearest neighbors, then the instantaneous
scattering dynamics of the solute-solvent pair alone suffices to explain the
high frequency relaxation. The many-body features of the liquid only appear in
the guise of a purely equilibrium problem, that of finding the likelihood of
particularly effective solvent arrangements around the solute. These results
are tested numerically on model diatomic solutes dissolved in atomic fluids
(including the experimentally and theoretically interesting case of I_2 in Xe).
The instantaneous pair theory leads to results in quantitative agreement with
those obtained from far more laborious exact molecular dynamics simulations.Comment: 55 pages, 6 figures Scheduled to appear in J. Chem. Phys., Jan, 199
Quantum Coherent String States in AdS_3 and SL(2,R) WZWN Model
In this paper we make the connection between semi-classical string
quantization and exact conformal field theory quantization of strings in 2+1
Anti de Sitter spacetime. More precisely, considering the WZWN model
corresponding to SL(2,R) and its covering group, we construct quantum {\it
coherent} string states, which generalize the ordinary coherent states of
quantum mechanics, and show that in the classical limit they correspond to
oscillating circular strings. After quantization, the spectrum is found to
consist of two parts: A continuous spectrum of low mass states (partly
tachyonic) fulfilling the standard spin-level condition necessary for unitarity
|j|< k/2, and a discrete spectrum of high mass states with asymptotic behaviour
m^2\alpha'\propto N^2 (N positive integer). The quantization condition for the
high mass states arises from the condition of finite positive norm of the
coherent string states, and the result agrees with our previous results
obtained using semi-classical quantization. In the k\to\infty limit, all the
usual properties of coherent or {\it quasi-classical} states are recovered. It
should be stressed that we consider the circular strings only for simplicity
and clarity, and that our construction can easily be used for other string
configurations too. We also compare our results with those obtained in the
recent preprint hep-th/0001053 by Maldacena and Ooguri.Comment: Misprints corrected. Final version to appear in Phys. Rev.
D1-D5 on ALE Space
We construct a two-dimensional N=(0,4) quiver gauge theory on D1-brane
probing D5-branes on ALE space, and study its IR behavior. This can be thought
of as a gauged linear sigma model for the NS5-branes on ALE space.Comment: 17 pages, 1 figure, lanlmac; v2: reference adde
Like-charge attraction through hydrodynamic interaction
We demonstrate that the attractive interaction measured between like-charged
colloidal spheres near a wall can be accounted for by a nonequilibrium
hydrodynamic effect. We present both analytical results and Brownian dynamics
simulations which quantitatively capture the one-wall experiments of Larsen and
Grier (Nature 385, p. 230, 1997).Comment: 10 pages, 4 figure
Modelling study of the impact of deep convection on the UTLS air composition – Part 2: Ozone budget in the TTL
International audienceIn this second part of a series of two papers which aim to study the local impact of deep convection on the chemical composition of the Upper Troposphere and Lower Stratosphere (UTLS), we focus on ozone simulation results using a mesoscale model that includes on-line chemistry. A severe convective system observed on 8 February 2001 at Bauru, Brazil, is studied. This unorganised convective system is composed of several convective cells that interact with each other. We show that there is an increase in the ozone concentration in the tropical transitional layer (TTL) in the model during this event, which is compatible with ozone sonde observations from Bauru during the 2004 convective season. The model horizontal variability of ozone in this layer is comparable with the variability of the ozone sonde observations in the same area. The calculation of the ozone budget in the TTL during a 24 h period in the area of the convective system shows that the ozone behaviour in this layer is mainly driven by dynamics. The horizontal flux at a specific time is the main contribution in the budget, since it drives the sign and the magnitude of the total ozone flux. However, when averaged over the 24 h period, the horizontal flux is smaller than the vertical fluxes, and leads to a net decrease of ozone molecule number of 23%. The upward motions at the bottom of the TTL, related to the convection activity is the main contributor to the budget over the 24h period since it can explain 70% of the total ozone increase in the TTL, while the chemical ozone production inside the TTL is estimated to be 29% of the ozone increase, if NOx production by lightning (LNOx) is taken into account. It is shown that downward motion at the tropopause induced by gravity waves generated by deep convection is non negligible in the TTL ozone budget, since it represents 24% of the ozone increase. The flux analysis shows the importance of the vertical contributions during the life time of the convective event (about 8 h). The TTL ozone is driven out of the domain horizontally by the convective outflow during this period, limiting the ozone increase in this layer
Modelling study of the impact of deep convection on the UTLS air composition – Part II: Ozone budget in the TTL avenue de la Recherche Scientifique, 45071 Orléans cedex 2, France
International audienceIn this second part of a series of two papers which aim to study the local impact of deep convection on the chemical composition of the Upper Troposphere and Lower Stratosphere (UTLS), we focus on ozone simulation results using a mesoscale model that includes on-line chemistry. A severe convective system observed on 8 February 2001 at Bauru, Brazil, is studied. We show that there is an increase in the ozone concentration in the tropical transitional layer (TTL) in the model during this event, which is compatible with ozone sonde observations from Bauru during the 2004 convective season. The model horizontal variability of ozone in this layer is comparable with the variability of the ozone sonde observations in the same area. The calculation of the ozone budget in the TTL shows that the ozone behaviour in this layer is mainly driven by dynamics. The upward motions at the bottom of the TTL, related to the convection activity is the main contributor to the budget since it can explain 75% of the total ozone increase in the TTL, while the chemical ozone production inside the TTL is estimated to be 23.5% of the ozone increase if NOx production by lightning (LNOx) is taken into account. It is shown that downward motions at the tropopause induced by gravity waves generated by deep convection are non negligible in the TTL ozone budget, since it represents 11% of the ozone increase. The correlation between the convection activity and the vertical flux at 13 km, the vertical flux at 17 km, and the chemical production is brought to the fore in this simulation
- …