140 research outputs found

    Tau-Targeted Immunization Impedes Progression of Neurofibrillary Histopathology in Aged P301L Tau Transgenic Mice

    Get PDF
    In Alzheimer's disease (AD) brains, the microtubule-associated protein tau and amyloid-β (Aβ) deposit as intracellular neurofibrillary tangles (NFTs) and extracellular plaques, respectively. Tau deposits are furthermore found in a significant number of frontotemporal dementia cases. These diseases are characterized by progressive neurodegeneration, the loss of intellectual capabilities and behavioral changes. Unfortunately, the currently available therapies are limited to symptomatic relief. While active immunization against Aβ has shown efficacy in both various AD mouse models and patients with AD, immunization against pathogenic tau has only recently been shown to prevent pathology in young tau transgenic mice. However, if translated to humans, diagnosis and treatment would be routinely done when symptoms are overt, meaning that the histopathological changes have already progressed. Therefore, we used active immunization to target pathogenic tau in 4, 8, and 18 months-old P301L tau transgenic pR5 mice that have an onset of NFT pathology at 6 months of age. In all age groups, NFT pathology was significantly reduced in treated compared to control pR5 mice. Similarly, phosphorylation of tau at pathological sites was reduced. In addition, increased astrocytosis was found in the oldest treated group. Taken together, our data suggests that tau-targeted immunization slows the progression of NFT pathology in mice, with practical implications for human patients

    MicroRNA networks surrounding APP and amyloid-β metabolism - implications for Alzheimer's disease

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNA regulators of protein synthesis that function as "fine-tuning" tools of gene expression in development and tissue homeostasis. Their profiles are significantly altered in neurodegenerative diseases such as Alzheimer's disease (AD) that is characterized by both amyloid-β (Aβ) and tau deposition in brain. A key challenge remains in determining how changes in miRNA profiles translate into biological function in a physiological and pathological context. The key lies in identifying specific target genes for deregulated miRNAs and understanding which pathogenic factors trigger their deregulation. Here we review the literature about the intricate network of miRNAs surrounding the regulation of the amyloid precursor protein (APP) from which Aβ is derived by proteolytic cleavage. Normal brain function is highly sensitive to any changes in APP metabolism and miRNAs function at several steps to ensure that the correct APP end product is produced and in the right form and abundance. Disruptions in this miRNA regulatory network may therefore alter Aβ production, which in turn can affect miRNA expression

    Neuronal microRNA eeregulation in response to Alzheimer's disease Amyloid-β

    Get PDF
    Normal brain development and function depends on microRNA (miRNA) networks to fine tune the balance between the transcriptome and proteome of the cell. These small non-coding RNA regulators are highly enriched in brain where they play key roles in neuronal development, plasticity and disease. In neurodegenerative disorders such as Alzheimer's disease (AD), brain miRNA profiles are altered; thus miRNA dysfunction could be both a cause and a consequence of disease. Our study dissects the complexity of human AD pathology, and addresses the hypothesis that amyloid-beta (Abeta) itself, a known causative factor of AD, causes neuronal miRNA deregulation, which could contribute to the pathomechanisms of AD. We used sensitive TaqMan low density miRNA arrays (TLDA) on murine primary hippocampal cultures to show that about half of all miRNAs tested were down-regulated in response to Abeta peptides. Time-course assays of neuronal Abeta treatments show that Abeta is in fact a powerful regulator of miRNA levels as the response of certain mature miRNAs is extremely rapid. Bioinformatic analysis predicts that the deregulated miRNAs are likely to affect target genes present in prominent neuronal pathways known to be disrupted in AD. Remarkably, we also found that the miRNA deregulation in hippocampal cultures was paralleled in vivo by a deregulation in the hippocampus of Abeta42-depositing APP23 mice, at the onset of Abeta plaque formation. In addition, the miRNA deregulation in hippocampal cultures and APP23 hippocampus overlaps with those obtained in human AD studies. Taken together, our findings suggest that neuronal miRNA deregulation in response to an insult by Abeta may be an important factor contributing to the cascade of events leading to AD.N.S. is supported by the Human Frontier Science Program. L.I. is supported by the National Health and Medical Research Council (NHMRC) and the Australian Research Council (ARC), and J.G. is supported by grants from the University of Sydney, the National Health and Medical Research Council (NHMRC), the Australian Research Council (ARC), and the J.O. & J.R. Wicking Trust. Postgraduate scholarship support has been provided by the Wenkart Foundation, GlaxoSmithKline and Alzheimer’s Australia

    Lessons from Tau-Deficient Mice

    Get PDF
    Both Alzheimer's disease (AD) and frontotemporal dementia (FTD) are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo

    ENU Mutagenesis Screen to Establish Motor Phenotypes in Wild-Type Mice and Modifiers of a Pre-Existing Motor Phenotype in Tau Mutant Mice

    Get PDF
    Modifier screening is a powerful genetic tool. While not widely used in the vertebrate system, we applied these tools to transgenic mouse strains that recapitulate key aspects of Alzheimer's disease (AD), such as tau-expressing mice. These are characterized by a robust pathology including both motor and memory impairment. The phenotype can be modulated by ENU mutagenesis, which results in novel mutant mouse strains and allows identifying the underlying gene/mutation. Here we discuss this strategy in detail. We firstly obtained pedigrees that modify the tau-related motor phenotype, with mapping ongoing. We further obtained transgene-independent motor pedigrees: (i) hyperactive, circling ENU 37 mice with a causal mutation in the Tbx1 gene—the complete knock-out of Tbx1 models DiGeorge Syndrome; (ii) ENU12/301 mice that show sudden jerky movements and tremor constantly; they have a causal mutation in the Kcnq1 gene, modelling aspects of the Romano-Ward and Jervell and Lange-Nielsen syndromes; and (iii) ENU16/069 mice with tremor and hypermetric gait that have a causal mutation in the Mpz (Myelin Protein Zero) gene, modelling Charcot-Marie-Tooth disease type 1 (CMT1B). Together, we provide evidence for a real potential of an ENU mutagenesis to dissect motor functions in wild-type and tau mutant mice

    Experimental Diabetes Mellitus Exacerbates Tau Pathology in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimer's disease (AD) as it is involved in the metabolism of β-amyloid (Aβ) and tau, two proteins that form Aβ plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology

    Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling

    Get PDF
    Canonical Wnt signaling instructively promotes sensory neurogenesis in early neural crest stem cells (eNCSCs) (Lee, H.Y., M. Kléber, L. Hari, V. Brault, U. Suter, M.M. Taketo, R. Kemler, and L. Sommer. 2004. Science. 303:1020–1023). However, during normal development Wnt signaling induces a sensory fate only in a subpopulation of eNCSCs while other cells maintain their stem cell features, despite the presence of Wnt activity. Hence, factors counteracting Wnt signaling must exist. Here, we show that bone morphogenic protein (BMP) signaling antagonizes the sensory fate-inducing activity of Wnt/β-catenin. Intriguingly, Wnt and BMP act synergistically to suppress differentiation and to maintain NCSC marker expression and multipotency. Similar to NCSCs in vivo, NCSCs maintained in culture alter their responsiveness to instructive growth factors with time. Thus, stem cell development is regulated by combinatorial growth factor activities that interact with changing cell-intrinsic cues

    Mouse models of frontotemporal dementia: a comparison of phenotypes with clinical symptomatology

    Get PDF
    Frontotemporal dementia (FTD) is the second most common cause of young onset dementia. It is increasingly recognized that there is a clinical continuum between FTD and amyotrophic lateral sclerosis (ALS). At a clinical, pathological and genetic level there is much heterogeneity in FTD, meaning that our understanding of this condition, pathophysiology and development of treatments has been limited. A number of mouse models focusing predominantly on recapitulating neuropathological and molecular changes of disease have been developed, with most transgenic lines expressing a single specific protein or genetic mutation. Together with the species-typical presentation of functional deficits, this makes the direct translation of results from these models to humans difficult. However, understanding the phenotypical presentations in mice and how they relate to clinical symptomology in humans is essential for advancing translation. Here we review current mouse models in FTD and compare their phenotype to the clinical presentation in patients
    corecore