1,394 research outputs found

    3d metallaelectrocatalysis for resource economical syntheses

    Get PDF
    This review summarizes key developments in 3d metallaelectrocatalysis in the context of resource economy in molecular syntheses

    Observations of Accreting Pulsars

    Get PDF
    We discuss recent observations of accreting binary pulsars with the all-sky BATSE instrument on the Compton Gamma Ray Observatory. BATSE has detected and studied nearly half of the known accreting pulsar systems. Continuous timing studies over a two-year period have yielded accurate orbital parameters for 9 of these systems, as well as new insights into long-term accretion torque histories

    On the Correlation of Torque and Luminosity in GX 1+4

    Get PDF
    Over five years of daily hard X-ray (>20 keV) monitoring of the 2-min accretion-powered pulsar GX 1+4 with the Compton Gamma Ray Observatory/BATSE large-area detectors has found nearly continuous rapid spin-down, interrupted by a bright 200-d spin-up episode. During spin-down, the torque becomes more negative as the luminosity increases (assuming that the 20-60 keV pulsed flux traces bolometric luminosity), the opposite of what is predicted by standard accretion torque theory. No changes in the shape of the 20-100 keV pulsed energy spectrum were detected, so that a very drastic change in the spectrum below 20 keV or the pulsed fraction would be required to make the 20-60 keV pulsed flux a poor luminosity tracer. These are the first observations which flatly contradict standard magnetic disk accretion theory, and they may have important implications for understanding the spin evolution of X-ray binaries, cataclysmic variables, and protostars. We briefly discuss the possibility that GX 1+4 may be accreting from a retrograde disk during spin-down, as previously suggested.Comment: 10 pages including 3 PS figures. To appear in ApJ Letter

    The Outbursts and Orbit of the Accreting Pulsar GS 1843-02 = 2S 1845-024

    Get PDF
    We present observations of a series of 10 outbursts of pulsed hard X-ray flux from the transient 10.6 mHz accreting pulsar GS 1843-02, using the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory. These outbursts occurred regularly every 242 days, coincident with the ephemeris of the periodic transient GRO J1849-03 (Zhang et al. 1996), which has recently been identified with the SAS 3 source 2S 1845-024 (Soffitta et al. 1998). Our pulsed detection provides the first clear identification of GS 1843-02 with 2S 1845-024. We present a pulse timing analysis which shows that the 2S 1845-024 outbursts occur near the periastron passage of the neutron star's highly eccentric (e = 0.88+-0.01) 242.18+-0.01 day period binary orbit about a high mass (M > 7 solar masses) companion. The orbit and transient outburst pattern strongly suggest the pulsar is in a binary system with a Be star. Our observations show a long-term spin-up trend, with most of the spin-up occurring during the outbursts. From the measured spin-up rates and inferred luminosities we conclude that an accretion disk is present during the outbursts.Comment: Accepted for publication in Astrophysical Journa

    The Outbursts and Orbit of the Accreting Pulsar GS 1843-02=1845-024

    Get PDF
    We present observations of a series of 10 outbursts of pulsed hard X-ray flux from the transient 10.6 mHz accreting pulsar GS 1843-02, using the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory. These outbursts occurred regularly every 242 days, coincident with the ephemeris of the periodic transient GRO J1849-03, which has recently been identified with the SAS 3 source 2S 1845-024. Our pulsed detection provides the first clear identification of GS 1843-02 with 2S 1845-024. We present a pulse timing analysis that shows that the 2S 1845-024 outbursts occur near the periastron passage of the neutron star's highly eccentric (e=0.88 ± 0.01) 242.18 ± 0.01 day period binary orbit about a high-mass (M_c>7 M_☉) companion. The orbit and transient outburst pattern strongly suggest that the pulsar is in a binary system with a Be star. Our observations show a long-term spin-up trend, with most of the spin-up occurring during the outbursts. From the measured spin-up rates and inferred luminosities we conclude that an accretion disk is present during the outbursts

    A Sequence of Outbursts from the Transient X-Ray Pulsar GS 0834-430

    Get PDF
    GS 0834-430, a 12.3 s accretion-powered pulsar, has been observed in seven outbursts with the BATSE large-area detectors on the Compton Gamma Ray Observatory. The first five outbursts observed by BATSE occurred at intervals of about 107 days, while the final two outbursts were separated by about 140 days. The photon energy spectrum, measured by Earth occultation in the 20-100 keV band, can be fitted by a power law with photon index α ≈ -3.7 or by an exponential spectrum with temperature kT ≈ 15 keV, with some variations within outbursts. The source has a low pulse fraction, ≾ 0.15 in the 20-50 keV band. We have observed significant temporal and energy-dependent variations in epoch folded pulse profiles. Because the intrinsic torque effects for this system are at least comparable to orbital effects, pulse timing analysis did not produce a unique orbital solution. However, confidence regions for the orbital elements yielded the following 1 σ limits: orbital period P_(orb) = 105.8 ± 0.4 days and eccentricity 0.10 ≾ e ≾ 0.17. GS 0834-430 is most likely a Be/X-ray binary

    Rapid Spin-Up Episodes in the Wind-Fed Accreting Pulsar GX 301-2

    Get PDF
    The accreting pulsar GX 301-2 (P = 680 s) has been observed continuously by the large-area detectors of the Burst and Transient Source Experiment (BATSE) instrument on the Compton Gamma Ray Observatory since 1991 April 5. Orbital parameters determined from these data are consistent with previous measurements, with improved accuracy in the current orbital epoch. The most striking features in the pulsar frequency history are two steady and rapid spin-up episodes, with ν˙~(3-5)×10^(-12) Hz s^(-1), each lasting for about 30 days. They probably represent the formation of transient accretion disks in this wind-fed pulsar. Except for these spin-up episodes, there are virtually no net changes in the neutron star spin frequency on long timescales. We suggest that the long-term spin-up trend observed since 1984 (ν˙~2×10^(-13) Hz s^(-1)) may be due entirely to brief (~20 days) spin-up episodes similar to those we have discovered. We assess different accretion models and their ability to explain the orbital phase dependence of the observed flux. In addition to the previously observed preperiastron peak at orbital phase 0.956 +/- 0.022, we also find a smaller peak close to apastron at orbital phase 0.498 +/- 0.057. We show that if the companion star's effective temperature is less than 22,000 K, then it must have a mass M_c < 70 M_⊙ and a radius R_c < 85 R_⊙ so as not to overfill the tidal lobe at periastron. In order not to overflow the Roche lobe at periastron, the corresponding values are M_c < 55 M_⊙ and R_c < 68 R_⊙. These constraints are nearly at odds with the reclassification by Kaper et al. of the companion as a B1 Ia + hypergiant

    Discovery of the Orbit of the X-Ray Pulsar OAO 1657-415

    Get PDF
    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. Arrival time analysis of 20-60 keV data yielded the following best-fit orbital elements: P_(orb) = 10^d.4436 ± 0^d.0038, a_x sin i = 106.0 ± 0.5 lt-sec, e = 0.104 ± 0.005, ω = 93° ± 5°, T_(π/2) = JD 2,448,516.49 ± 0.05 TDB. From the pulsar mass function f_x(M) = 11.7 ± 0.2 M_⊙ and the measured eclipse half-angle θ_e = 29.7 ± 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation

    Torque Reversal and Spin-Down of the Accretion-Powered Pulsar 4U 1626-67

    Get PDF
    Over 5 yr of hard X-ray (20-60 keV) monitoring of the 7.66 s accretion-powered pulsar 4U 1626-67 with the Compton Gamma Ray Observatory/BATSE large-area detectors has revealed that the neutron star is now steadily spinning down, in marked contrast to the steady spin-up observed during 1977-1989. This is the second accreting pulsar (the other is GX 1+4) that has shown extended, steady intervals of both spin-up and spin-down. Remarkably, the magnitudes of the spin-up and spin-down torques differ by only 15%, with the neutron star spin changing on a timescale |ν/dot ν| ≈ 5000 yr in both states. The current spin-down rate is itself decreasing on a timescale |dot ν/bar ν| ≈ 26 yr. The long-term timing history shows small-amplitude variations on a 4000 day timescale, which are probably due to variations in the mass transfer rate. The pulsed 20-60 keV emission from 4U 1626-67 is well-fitted by a power-law spectrum with photon index γ = 4.9 and a typical pulsed intensity of 1.5 × 10^(-10) ergs cm^(-2) s^(-1). The low count rates with BATSE prohibited us from constraining the reported 42 minute binary orbit, but we can rule out long-period orbits in the range 2 days lesssim Porb lesssim 900 days. We compare the long-term torque behavior of 4U 1626-67 to other disk-fed accreting pulsars and discuss the implications of our results for the various theories of magnetic accretion torques. The abrupt change in the sign of the torque is difficult to reconcile with the extremely smooth spin-down now observed. The strength of the torque noise in 4U 1626-67, ~10^(-22) Hz^2 s^(-2) Hz^(-1), is the smallest ever measured for an accreting X-ray pulsar, and it is comparable to the timing noise seen in young radio pulsars. We close by pointing out that the core temperature and external torque (the two parameters potentially relevant to internal sources of timing noise) of an accreting neutron star are also comparable to those of young radio pulsars
    • …
    corecore