66 research outputs found

    Nuclear resonant surface diffraction

    Full text link
    Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution of the resonantly diffracted x-rays together with the time-dependence of the coherently diffracted nuclear signal reveals surface spin structures with very high sensitivity. This novel scattering technique provides a unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics

    Spin precession mapping at ferromagnetic resonance via nuclear resonant scattering

    Full text link
    We probe the spin dynamics in a thin magnetic film at ferromagnetic resonance by nuclear resonant scattering of synchrotron radiation at the 14.4 keV resonance of 57^{57}Fe. The precession of the magnetization leads to an apparent reduction of the magnetic hyperfine field acting at the 57^{57}Fe nuclei. The spin dynamics is described in a stochastic relaxation model adapted to the ferromagnetic resonance theory by Smit and Beljers to model the decay of the excited nuclear state. From the fits of the measured data the shape of the precession cone of the spins is determined. Our results open a new perspective to determine magnetization dynamics in layered structures with very high depth resolution by employing ultrathin isotopic probe layers

    Time-Resolved X-ray Microscopy of Spin-Torque-Induced Magnetic Vortex Gyration

    Full text link
    Time-resolved X-ray microscopy is used to image the influence of alternating high-density currents on the magnetization dynamics of ferromagnetic vortices. Spin-torque induced vortex gyration is observed in micrometer-sized permalloy squares. The phases of the gyration in structures with different chirality are compared to an analytical model and micromagnetic simulations, considering both alternating spinpolarized currents and the current's Oersted field. In our case the driving force due to spin-transfer torque is about 70% of the total excitation while the remainder originates from the current's Oersted field. This finding has implications to magnetic storage devices using spin-torque driven magnetization switching and domain-wall motion.Comment: 10 pages, 3 figure

    Observation of coupled vortex gyrations by 70-ps-time- and 20-nm-space-resolved full-field magnetic transmission soft x-ray microscopy

    Get PDF
    We employed time- and space-resolved full-field magnetic transmission soft x-ray microscopy to observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni80 Fe20) disks. The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core positions. We observed their correlation for a specific vortex-state configuration. This work provides a robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators.open282

    Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser

    Full text link
    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional x-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered x-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including Compton scattering, fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second-order paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations

    Electronic Quantum Coherence in Glycine Molecules Probed with Ultrashort X-ray Pulses in Real Time

    Full text link
    Structural changes in nature and technology are driven by charge carrier motion. A process such as charge-directed reactivity that can be operational in radiobiology is more efficient, if energy transfer and charge motion proceeds along well-defined quantum mechanical pathways keeping the coherence and minimizing dissipation. The open question is: do long-lived electronic quantum coherences exist in complex molecules? Here, we use x-rays to create and monitor electronic wave packets in the amino acid glycine. The outgoing photoelectron wave leaves behind a positive charge formed by a superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced electronic coherence through the photoelectron emission from the sequential double photoionization processes. The observed sinusoidal modulation of the detected electron yield as a function of time clearly demonstrates that electronic quantum coherence is preserved for at least 25 femtoseconds in this molecule of biological relevance. The surviving coherence is detected via the dominant sequential double ionization channel, which is found to exhibit a phase shift as a function of the photoelectron energy. The experimental results agree with advanced ab-initio simulations.Comment: 54 pages, 11 figure
    corecore